ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Iceland drilling project close to plugging into the Mid-Atlantic ridge

In a few months, Iceland will be drawing power directly from molten rock.

Alexandru MicubyAlexandru Micu
October 24, 2016
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

A new geothermal drilling project in Iceland could produce ten times as much power as regular wells by tapping into the molten mantle of the planet.

Image credits IDDP.

While it may not look like it on the surface (especially now that fall is in full swing), the Earth is a very hot ball of space rock. Dig just a few kilometers under the surface, and you’ll hit temperatures high enough to make water boil. Dig deeper and at about 10 to 70 km (6 to 43 miles), depending on the kind of crust, you’ll find yourself in a place hot enough for rocks to stay molten all the time — the mantle. This is the stuff on which tectonic plates float on. This is where all the volcanoes in the world draw their lava from. And, ultimately, this is where all geothermal plants draw power from.

The hottest hole in the world

A new Icelandic project began on the 12th of August with the aim of supercharging geothermal energy production by drilling a 5 km (3.1 mile) deep hole in the Reykjanes area, southwest Iceland. This would bypass a thick layer of rocks (which aren’t very good thermal conductors) and allow engineers to draw power directly from magma systems that power the area’s lively subsurface volcanism. This may very well become the hottest hole in the world, with estimates placing temperatures anywhere between 400 and 1,000 degrees Celsius.

Called the Iceland Deep Drilling Project (IDDP), the goal is to drill all the way down to a landward extension of the Mid-Atlantic ridge — a major fissure between Earth’s tectonic plates — says Albert Albertsson, assistant director of HS Orka, an Icelandic geothermal energy company involved in the project. Here, magma heats water under the ocean’s floor. Pressures are incredibly high, around 200 atmospheres, which means that the researchers and companies behind the project will likely find the water as “supercritical steam”. It’s neither a liquid nor a gaseous state, sharing properties of both — but most importantly, it can store much more energy than either of those states.

“People have drilled into hard rock at this depth, but never before into a fluid system like this,” says Albertsson.

Albertsson said they’re expecting to find the land version of black smokers, underwater springs that run hot enough to dissolve metals such as gold or silver.

“If they can get supercritical steam in deep boreholes, that will make an order of magnitude difference to the amount of geothermal energy the wells can produce,” Arnar Guðmundsson from Invest in Iceland, a government agency that promotes energy development, told New Scientist.

The project’s idea of tapping sub-surface magma came back in 2009 when the IDDP (then drilling a conventional well) accidentally drilled into a molten rock reservoir about 2 km (1.25 miles). Just to see how much energy it could generate, the team poured water down the hole — and ended up producing 30 megawatts of power.

If this attempt is successful and proves to be more sustainable than the 2009 experiment, we could see a huge increase in geothermal energy output in areas with active volcanism, such as Japan or California. The drilling should be done by the end of the year, and in the following months, we’ll get to see just how much power it can churn out.

RelatedPosts

Researchers produce the loudest sound in the world inside tiny jets of water
Since 2003 Coal consumption has increased 9x faster than Wind energy and 40x than Solar
Russia could cut all Europe’s gas supplies this winter
Researchers map out energy consumption for every building in Boston

The project was short-lived, seeing as it was only ever set up as an experiment, but the team is hoping this new attempt will be more sustainable.

But before you get too excited, for now, this is all purely theoretical – we need to actually get the new well up and running first. The hole should be drilled by the end of the year, and in the months that follow, we’ll get an idea of how much electricity such a set-up can generate.

 

Tags: drillingenergygeothermalicelandIDDPpower

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Future

Everyone Thought ChatGPT Used 10 Times More Energy Than Google. Turns Out That’s Not True

byTibi Puiu
2 days ago
Mind & Brain

Your Brain Uses Only 5% More Energy Whether You’re Actively Thinking or Not. So, What Causes Mental Fatigue?

byTibi Puiu
4 days ago
News

Vegetarians Are More Rebellious (and Power Hungry) Than You Think

byMihai Andrei
1 week ago
Economics

In 2019, Iceland started experimenting with a shorter workweek. It’s been a resounding success

byMihai Andrei
4 weeks ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.