Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science → News

Elite athletes may owe some of their peak performance to unique gut microbes

And some scientists think that we could one day gain access to these probiotics.

Tibi Puiu by Tibi Puiu
June 24, 2019
in Biology, Health, News

Credit: Pixabay.
Credit: Pixabay.

The world’s foremost athletes owe their peak performance to both good genes and tremendous hard work — but that’s not all. According to a new study, microbes that are only found in the guts of athletes may enhance endurance, helping them perform better than regular people who live a sedentary lifestyle.

The findings were reported by researchers at Harvard University who initially analyzed stool samples from 15 competitors in the 2015 Boston Marathon. At the time, the researchers found high levels of a microbe called Veillonella, which spiked after an intense workout and skyrocketed after the marathon. This bacteria is known for breaking down lactate — a byproduct constantly produced in the body during normal metabolism and exercise. It’s what causes aching legs in runners during the last portion of a long race.

A side effect of high lactate levels is an increase in the acidity of the muscle cells, along with disruptions of other metabolites. The same metabolic pathways that permit the breakdown of glucose to energy perform poorly in this acidic environment. It might seem odd that working muscles would produce a substance that would slow their capacity for more work. However, there’s a good reason: lactate accumulation prevents permanent damage during extreme exertion by slowing down biological systems that are required for muscle contraction.

Veillonella absorbs lactate, converting the metabolite into a fuel called propionate. This short-chained fatty acid also has anti-inflammatory properties.

The Harvard researchers later confirmed these findings in another study involving 87 other athletes. Then, in an experiment involving only mice, the researchers colonized a strain of Veillonella collected from one of the athletes. The rodents which had the bacteria in their guts could run 13% longer on treadmills — a huge performance boost in the ultra-competitive world of elite sports where races can be won or lost due to a split-second difference.

The findings support the idea that lactate metabolism is an important component of extreme athlete performance. Previously, other studies had also shown that the microbiomes of athletes differ from those of sedentary individuals.

“Taken together, these studies reveal that V. atypica improves run time via its metabolic conversion of exercise-induced lactate into propionate, thereby identifying a natural, microbiome-encoded enzymatic process that enhances athletic performance,” the authors concluded.

In the future, the researchers would like to find out if they can augment endurance performance in humans as they did in mice. They would also like to see whether the endurance boost is due to the propionate’s anti-inflammatory properties. Perhaps one day you’ll be able to buy lab-made probiotics that contain Veillonella and other endurance-enhancing bacteria — that’s already the goal at an American startup called Fitbiomics. There’s also the possibility that the microbiomes of super-athletes might contain bacteria that help prevent diseases like irritable bowel syndrome, which is another compelling avenue of research.

The findings were reported in the journal Nature Medicine.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Peak oil – reached. Peak water – reached. Next on the list? Peak soil
  2. Himalayan Sherpas owe their super-human high-altitude performance to a unique metabolism
  3. Tokyo Olympics: why the stories of elite athletes make for such great childrens’ books
  4. The Olympian period — the effect of menstruation on female athletes performance
  5. New neurofeedback system helps people manage arousal and maintain peak performance
Tags: bacteriaprobiotic

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW