ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Glowing plants imbued with firefly enzymes might one day replace lamps

A bright idea!

Tibi PuiubyTibi Puiu
December 15, 2017
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Glow-in-the-dark roads make debut in Netherlands
MIT designs and builds a plant-robot plantborg that can move towards light
New firefly species from California discovered by undergrad student
Plant study hints at dangers of global warming
glowing-plants
Credit: Melanie Gonick/MIT.

Your bedpost plants might one day double as a reading lamp if MIT’s latest proect ever takes off. The team, which specializes in nanobionics, embedded nanoparticles into the watercress plant (Nasturtium officinale) to make it glow in a dim light. MIT hopes that this proof of concept one day makes its way into our homes and even replaces street lighting with glowing trees.

“The vision is to make a plant that will function as a desk lamp — a lamp that you don’t have to plug in,” said Michael Strano, Professor of Chemical Engineering at MIT and senior author of the study, in a statement. “The light is ultimately powered by the energy metabolism of the plant itself.”

To make plants glow, MIT engineers turned to luciferase — the oxidative enzymes that produce bioluminescence lending glowing abilities to animals like fireflies or certain mushroom species. Luciferase catalyzes a compound called luciferin which is what generates the light. Another molecule called co-enzyme A removes reaction byproducts that inhibit luciferase activity.

Previously, Vanderbilt University scientists employed a modified version of luciferase to make brain cells glow in the dark. 

All of these three components were packaged into carriers that balance light and toxicity, submerged in a solution, then exposed to high pressure to force the particles into the stomata pores of leaves. This way, watercress plants were able to expel a dim light for almost four hours before the compounds wore off, as reported in the journal Nano Letters.

Next, the team plans on refining its technique to make plants glow for a longer time. The firefly-compounds could potentially be incorporated in a spray so that basically any plant can be coaxed to emit light. So far, MIT demonstrated the luciferase compounds in plants like watercress, arugula, kale, and spinach.

Such technology could one day prove as a useful alternative to conventional products for low-intensity indoor lighting. In some places, streets lamps could be replaced by glowing trees, for instance, thus reducing our energy consumption and carbon footprint.

“Plants can self-repair, they have their own energy, and they are already adapted to the outdoor environment,” Strano says. “We think this is an idea whose time has come. It’s a perfect problem for plant nanobionics.”

Tags: fireflyglow in the darkplant

Share41TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

How Some Flowers Evolved the Grossest Stench — and Why Flies Love It

byMihai Andrei
1 month ago
Agriculture

Your favorite fruits may have come from radioactive plants. Meet the wonderous ‘gamma gardens’

byMichelle Petersen
3 years ago
Agriculture

Climate warming is changing the US planting zones

byMihai Andrei
5 years ago
Biology

International research team creates eco superglue out of cellulose and water

byAlexandru Micu
5 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.