ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Brain network that picks words from the background noise revealed

Our brains are really good at sifting through information.

Alexandru MicubyAlexandru Micu
December 22, 2016
in Mind & Brain, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Scientists have identified the brain networks that help focus on one voice or conversation in a noisy room — known as the “cocktail party effect”. They hope that by emulating the way these areas work, modern voice recognition software can be made to function much more efficiently.

Noise
Image credits Gerd Altmann / Pixabay.

When you’re at a party, your brain allows you to tune in on a single conversation while lowering the volume of background noise, so to speak. Now, have you ever tried to give a voice command to a device in any type of noisy setting? If yes, you can probably understand why scientists would love to get their hand on a similar voice recognition system for our gadgets.

A new study might offer a way forward for such a technology. Neuroscientists led by Christopher Holdgraf from the University of California, Berkeley, recorded the brain activity of participants listening to a previously distorted sentence after they were told what it meant. The team worked with seven epilepsy patients who had electrodes placed on the surface of their brain to track seizures.

They played a very distorted recording of a sentence to each participant, which almost none of them was able to initially understand. An unaltered recording of the same sentence was played afterwards, followed by the garbled version once more.

“After hearing the intact sentence” the paper explains, the subjects understood the “noisy version” without any difficulty.

Brain recordings show that this moment of recognition coincided with patterns of activity in areas known to be involved in understanding sound and speech. When subjects listened to the garbled version, the team saw little activity in these areas, but hearing the clear sentence then caused their brains to light up.

This was the first time we saw the way our brains alter their response when listening to an understandable or garbled sound. When hearing the distorted phrase again, auditory and speech processing areas lit up and changed their pattern of activity over time, apparently tuning in to the words among the distortion.

“The brain actually changes the way it focuses on different parts of the sound,” explained the researchers.

“When patients heard the clear sentences first, the auditory cortex enhanced the speech signal.”

The team is now trying to expand on their findings and understand how the brain distinguishes between the background and the sounds we’re actually interested in hearing.

RelatedPosts

Why Warmer Countries Have Louder Languages
AI spots depression by looking at your patterns of speech
The Human brain might be organized a whole lot simpler than previously thought. Imaging reveals 3-D grid structure
Complex simplicity is the best for music

“We’re starting to look for more subtle or complex relationships between the brain activity and the sound,” Mr Holdgraf said.

“Rather than just looking at ‘up or down’, it’s looking at the details of how the brain activity changes across time, and how that activity relates to features in the sound.”

This, he added, gets closer to the mechanisms behind perception. If we understand how our brains filter out the noise, we can help people with speech and hearing impediments better hear the world around them. The team hopes to use the findings to develop a speech decoder — a brain implant to interpret people’s imagined speech — which could help those with certain neurodegenerative diseases that affect their ability to speak.

The full paper “Rapid tuning shifts in human auditory cortex enhance speech intelligibility” has been published in the journal Nature Communications.

Tags: brainnoisesoundspeech

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Scientists Gave People a Fatty Milkshake. It Turned Out To Be a “Brain Bomb”

byChris Marley
1 week ago
Health

Older Adults Keep Their Brains up to Two Years ‘Younger’ Thanks to This Cognitive Health Program

byTudor Tarita
2 weeks ago
Mind & Brain

Your Brain Gives Off a Faint Light and It Might Say Something About It Works

byTibi Puiu
3 weeks ago
Future

We’re Starting to Sound Like ChatGPT — And We Don’t Even Realize It

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.