ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Neurology

Brain MRIs just got a thousand times sharper

Although the technology was only demonstrated on mice, researchers think it can also work on humans.

Mihai AndreibyMihai Andrei
April 18, 2023
in Health, Mind & Brain, Neurology, News
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit

“It is something that is truly enabling. We can start looking at neurodegenerative diseases in an entirely different way,” said G. Allan Johnson, the lead author of the new paper.

This video shows horizontal ‘slices’ of the circuitry data moving up and down across the brain.

Magnetic resonance imaging (MRI) has become the ‘workhorse’ of brain imaging, and it’s useful for detecting internal health problems such as bleeding, swelling, tumors, infections, and many other types of damage. In the 50 years since it was invented, the resolution of MRI has been steadily improving, but there’s still plenty of room for progress.

Johnson is part of a group of researchers from several universities that, for decades, has embraced the challenge of improving MRI resolution. They improved and refined the elements that make up MRI machines and in their new breakthrough, they achieved a “resolution which is ~ 1,000 times higher than that of most preclinical MRI”.

MRI works through a mixture of magnets and radio waves. When a patient is placed in the MRI machine, their body is exposed to a strong magnetic field. This causes the protons in the hydrogen atoms within the body to align with the direction of the magnetic field.

Then, a radio frequency pulse is then applied to the patient, which causes the protons to absorb energy and flip their alignment. When the radio frequency pulse is turned off, the protons return to their original alignment and release the energy they absorbed in the form of radio waves.

These radio waves are detected by the MRI machine’s receiver coils and processed by a computer to produce a detailed image of the internal body structure being examined. You can also change the parameters of the magnets and the radio waves to image different types of tissues and different depths.

High level detail of the mouse brain
An image from the MRI showing the brain in great detail. Image credits: Duke University Center for In Vivo Microscopy.

In the new study, researchers used a special set of coils that are 100 times stronger than those in a clinical MRI. They also deployed massive computing power, the rough equivalent of nearly 800 laptops working together. But the results were worth it.

RelatedPosts

With Flink, researchers will be able to 3D print living minifactories
Denying cancer cells one key amino acid might destroy treatment-resistant tumors
Climate change will make droughts more intense, more frequent
For the first time, China surpasses the EU in per capita CO2 emissions

Just like 2D resolution is measured in pixels (and the smaller the pixel, the better the resolution), 3D resolution is measured in voxels. A voxel in this MRI measures just 5 microns — some clinical MRI voxels are even millions of times larger.

So far, the new technology has only been used on mice and it’s gonna take a bit of extra work to translate it to human MRIs, but even on mice, this could be very useful.

The approach enables researchers to label different types of cells from the brain. For instance, they can label dopamine-producing cells that are related to the progression of Parkinson’s Disease. In fact, mouse models are used extensively in the study of human diseases ranging from Huntington’s disease to Alzheimer’s.

This level of detail could help researchers better understand how things go awry in the mice brains, which in turn, could inform human research.

Indeed, Johnson says that this type of improvement in the level of MRI detail could pave the way for new groundbreaking research in brain diseases and brain-related conditions.

“Research supported by the National Institute of Aging uncovered that modest dietary and drug interventions can lead to animals living 25% longer,” Johnson said. “So, the question is, is their brain still intact during this extended lifespan? Could they still do crossword puzzles? Are they going to be able to do Sudoku even though they’re living 25% longer? And we have the capacity now to look at it. And as we do so, we can translate that directly into the human condition.”

Journal Reference: “Merged Magnetic Resonance And Light Sheet Microscopy Of The Whole Mouse Brain,” G. Allan Johnson, Yuqi Tian, David G. Ashbrook, Gary P. Cofer, James J. Cook, James C. Gee, Adam Hall, Kathryn Hornburg, Yi Qi, Fang-Cheng Yeh, Nian Wang, Leonard E. White, Robert W. Williams. Proceedings of the National Academy of Sciences, April 17, 2023. DOI: 10.1073/pnas.2218617120

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

great white shark
Animals

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

byJordan Strickler
13 minutes ago
Agriculture

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

byTudor Tarita
36 minutes ago
News

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

byMihai Andrei
56 minutes ago
News

Your browser lets websites track you even without cookies

byMihai Andrei
1 hour ago

Recent news

great white shark

This Shark Expert Has Spent Decades Studying Attacks and Says We’ve Been Afraid for the Wrong Reasons

June 30, 2025

A Rocket Carried Cannabis Seeds and 166 Human Remains into Space But Their Capsule Never Made It Back

June 30, 2025

Ancient ‘Zombie’ Fungus Trapped in Amber Shows Mind Control Began in the Age of the Dinosaurs

June 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.