ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Materials

Chocolate-inspired technique helps researchers develop better polymer shells

For centuries, chocolatiers have been trying to develop the perfect chocolate coating for bonbons, honing their skill to the point of artistic performance. But scientists believe they can take things even further.

Mihai AndreibyMihai Andrei
April 5, 2016
in Materials, Mathematics, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

For centuries, chocolatiers have been trying to develop the perfect chocolate coating for bonbons, honing their skill to the point of artistic performance. But scientists believe they can take things even further. A group of MIT researchers believe they’ve come up with the perfect chocolate coating technique, a technique that could have many applications outside the food industry.

Tartufo, a desert covered in chocolate. Photo by Anna Fox

Bonbons can come in a large variety of shapes, sizes and tastes – but the most loved ones are without a doubt small candies coated in chocolate. The first reports about bonbons come from the 17th century, when they were made at the French royal court.

“Think of this formula as a recipe,” says Pedro Reis, the Gilbert W. Winslow Associate Professor of mechanical engineering and civil and environmental engineering at MIT. “I’m sure chocolatiers have come up with techniques that give empirically a set of instructions that they know will work. But our theory provides a a much better, quantitative understanding of what’s going on, and one can now be predictive.”

Reis and his team were inspired by videos of chocolatiers making bonbons and other chocolate shells. They pour the chocolate into molds, allowing excess chocolate to flow out, creating a shell of uniform thickness. But Reis was curious: was there a way to accurately predict the thickness of the resulting shell? He set out to explore this seemingly frivolous question, alongside lead author and graduate student Anna Lee, postdoc Joel Marthelot, and applied mathematics instructor Pierre-Thomas Brun, along with colleagues from the team of François Gallaire at the Swiss Federal Institute of Technology in Lausanne, Switzerland.

Initially, Lee and Marthelot used an analogous technique to experimentally create their own shells, using not chocolate but a polymer solution that they drizzled over dome-shaped molds and spheres.

They found that again and again, the coating had equal thickness on all sides (they cut the balls in half to test this). So they set out and determined the mathematical formula for the thickness of the shell, which is basically the square root of the fluid’s viscosity, times the mold’s radius, divided by the curing time of the polymer, times the polymer’s density and the acceleration of gravity as the polymer flows down the mold.

RelatedPosts

Touch invisibility cloak prevents objects from being felt
Roofs that change colour to save energy
Coating makes steel stronger and squeaky clean
No, chocolate isn’t going extinct in 40 years — but we are set for a crisis

It sounds like a complicated formula, but it boils down to this: the bigger the mold, the thicker the shell, because it takes the fluid longer to flow to the bottom. The longer the curing time, the thinner the shell will be. Armed with that knowledge, they could go crazy with polymer models and see how to obtain shells of the desired thickness.

“You could go in the lab and lay down tons of ping pong balls and test various initial conditions, which is what Anna and Joel have been doing to some extent, but with numerics, you can get really creative,” Brun says.

Ultimately, they found that by tampering with the curing time, they can create much thicker coatings, which can be significant not only for the materials industry, but also for medical purposes

“By waiting between mixing and pouring the polymer, we can increase the thickness of a shell by a factor of 11,” says Lee.
“This flexibility of waiting gives us a simple parameter we can tune, depending on what we want for our final goal,” Reis says. “So I think ‘rapid fabrication’ is how we can describe this technique. Usually that term means 3-D printing and other expensive tools, but it could describe something as simple as pouring chocolate over a mold.”

Tags: chocolatecoatingpolymer

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Agriculture

Scientists Master the Process For Better Chocolate and It’s Not in the Beans

byJordan Strickler
3 weeks ago
Health

This Common Ingredient in Chocolate May Outperform Tamiflu Against the Flu In New Drug Combo

byTudor Tarita
1 month ago
Chemistry

Scientists Invented a Way to Store Data in Plastic Molecules and It Could Someday Replace Hard Drives

byRupendra Brahambhatt
4 months ago
Home science

Researchers are adding probiotics to chocolate to make it even healthier

byAlexandra Gerea
6 months ago

Recent news

We can still easily get AI to say all sorts of dangerous things

September 12, 2025

Pluto’s Moons and Everything You Didn’t Know You Want to Know About Them

September 11, 2025 - Updated on September 12, 2025

Japan Is Starting to Use Robots in 7-Eleven Shops to Compensate for the Massive Shortage of Workers

September 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.