ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Space station mold can survive 200 times more radiation than you or me

Researchers plan to employ them as producers of food, antibiotics, other materials for astronauts on deep space missions.

Alexandru MicubyAlexandru Micu
July 8, 2019
in Biology, News, Science, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Unlike our pinkish, frail frames, mold may be able to survive on the outside walls of our spaceships. Even when drenched in hard radiation.

Mold Cheese.
Image via Pixabay.

The International Space Station isn’t as squeaky-clean as you’d expect: in fact, it turns out that our current home in space is plagued by mold. Every week, astronauts spend several hours scrubbing and cleaning its inside walls to prevent this mold from impacting their health.

However, new research suggests that efforts to completely de-mold the ISS may be in vain. Mold spores can survive even on the outside walls of the station and can bear radiation levels thousands of times harsher than ourselves. The results also point to mold as a useful ally on space travels, which could help supply the crew with biological products such as antibiotics or vitamins.

Stowaways, cosmic rays

“We now know that [fungal spores] resist radiation much more than we thought they would, to the point where we need to take them into consideration when we are cleaning spacecraft, inside and outside,” said Marta Cortesão, a microbiologist at the German Aerospace Center (DLR) in Cologne, who presented the findings at the 2019 Astrobiology Science Conference.

“If we’re planning a long duration mission, we can plan on having these mold spores with us because probably they will survive the space travel.”

Mold spores can withstand extreme temperatures, ultraviolet light, chemicals and dry conditions. This resiliency makes them hard to kill. Spores of the two most common mold types on the ISS — Aspergillus and Pennicillium — can survive exposure to X-ray levels at over 200 times the deadly dose for humans, the team found. The findings show how important planetary protection protocols designed to prevent spacecraft from contaminating other planets with Earth-borne life are, and that we need to reconsider how much of a threat fungi spores are from this point of view.

The good news is that these two species aren’t generally harmful to humans. They can impact people with weakened immune systems in cases of extreme exposure (i.e. when inhaling a large quantity of these spores). However, Cortesão believes we can coax these molds to work in our favor. Fungi are more similar to us, genetically, than bacteria: they’re made up of complex cells with a structure resembling ours, and they come equipped with the biochemical machinery to synthesize polymers, food, vitamins, and other useful molecules astronauts may need on extended trips beyond Earth.

“Mold can be used to produce important things, compounds like antibiotics and vitamins. It’s not only bad, a human pathogen and a food spoiler, it also can be used to produce antibiotics or other things needed on long missions,” Cortesão said.

In the lab, Cortesão exposed fungal spores with ionizing radiation, high-frequency ultraviolet light, and heavy ions to see how they fared. Ionizing radiation kills cells by damaging their DNA and other essential cellular infrastructure but gets blocked by our planet’s magnetic field (the ISS also benefits from this shielding). Earth’s ozone layer protects us from high-energy UV down here on the surface. However, spacecraft going to the Moon or Mars would be exposed to both.

Cortesão reports that the spores survived exposure to X-rays up to 1000 gray, exposure to heavy ions at 500 gray and exposure to ultraviolet light up to 3000 joules per meter squared. Gray is a measure of absorbed dose of ionizing radiation (joules of radiation energy per kilogram of tissue). Half a gray is the threshold for radiation sickness in humans, while five gray is the lethal threshold.

RelatedPosts

Scientists may have seen a black hole being born for the first time ever
Six asteroids to pass close to Earth tomorrow, says NASA
ESA’s Gaia observatory sends back first star chart showing a billion new stars
First rocky habitable Earth-like planet

A 180-day voyage (about as long as we’d need to get to Mars) is estimated to expose passengers to around 0.7 gray. In other words, it could cause some issues for the human crew, but not for the mold.

In the future, the team plans to expand its search to understand how the combination of radiation, vacuum, low temperature, and low gravity in space affects the fungi.

The findings ” Fungal Spore Resistance to Space Radiation” have been presented at the 2019 Astrobiology Science Conference (AbSciCon 2019) on the 28th of June.

Tags: InternationalissMoldSpaceStation

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

Physicists Say Light Can Be Made From Nothing and Now They Have the Simulation to Prove It

byTibi Puiu
3 days ago
Biology

China’s Tiangong space station has some bacteria that are unknown to science

byMihai Andrei
3 weeks ago
Biology

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

byMihai Andrei
2 months ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
2 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.