ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

New projections warn that Greenland’s ice sheet will see 60% more melt than we’ve estimated

That’s a high margin of error.

Alexandru MicubyAlexandru Micu
December 17, 2020
in Climate, Environment, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research warns that the Greenland ice sheet is likely to melt even more than previously estimated — a solid 60% more.

Bad news keeps piling up for the Greenland ice sheet. A study earlier this month reported that in around 600 years or so, it will melt enough that it won’t ever be able to recover (the ice sheet creates its own microclimate, meaning it is making itself possible right now). Despite this, new research suggests that we’ve underestimated how large the problem truly is.

Melt a-plenty

The team, headed by researchers from the Universities of Liège and Oslo, used multiple climate models with the latest observations, finding that we’re likely to see a 60% greater melting of the Greenland ice sheet by 2100 than previously predicted. That melt will, obviously, contribute to a rising sea level.

“The MAR model (one of the models used for the paper) was the first to demonstrate that the Greenland ice sheet would melt further with a warming of the Arctic in summer. While our MAR model suggested that in 2100 the surface melting of the Greenland ice sheet would contribute to a rise in the oceans of around ten centimeters in the worst-case scenario (i.e. if we do not change our habits),” explains Stefan Hofer, a post-doc researcher at the University of Oslo.

“Our new projections now suggest a rise of 18 cm.”

The results of this paper will be integrated into the next Intergovernmental Panel on Climate Change (IPCC) report, AR6, the team adds. As they will be based on our most up-to-date models, the findings outlined by the paper should be more reliable than anything we’ve had previously.

Greenland’s ice sheet is the second-largest in the world after the Antarctic one, covering some 1.7 million square kilometers. A complete melt of this sheet would cause a rise in ocean levels by up to 7 meters, which is immense. Although the estimations in this paper are nowhere near that figure, they’re still higher than previous estimates, which is cause for concern.

The current paper reports that we’re looking at an 18cm (~7 in) increase in sea levels by 2100, which is 8cm higher than the previous estimation used by the IPCC. The researchers also used their MAR model to ‘downscale’ on previous IPCC scenarios. Keeping the same emission estimates that these used, the current model shows 60% more surface melting of the Greenland ice cap until the end of the century. Downscaling basically means turning a model with coarse resolution (i.e. low detail) into one with a higher resolution (more, finer detail).

“It would now be interesting”, says Xavier Fettweis, researcher and director of the Laboratory,” to analyze how these future projections are sensitive to the MAR model that we are developing by downscaling these scenarios with other models than MAR as we have done on the present climate.”

This was the first attempt to downscale the future scenarios regarding Greenland that the IPCC uses, the team notes. Future efforts to refine our climate models will receive support from various international projects such as the EU’s Horizon 2020, which should help the team gain access to even more cutting-edge data. Since melting processes are influenced by a wide variety of factors, our ability to predict them hinges on having as much reliable data factored in as possible.

RelatedPosts

Rain falls on Greenland’s snowy summit for the first time on record
Over-consumption is more deadly to Earth’s wildlife than climate change
Reducing air pollution levels won’t cause a spike in climate heating
What is the Greenhouse effect, and why it’s (currently) bad for us

The paper “GrSMBMIP: intercomparison of the modelled 1980-2012 surface mass balance over the Greenland Ice Sheet” has been published in the journal The Cryosphere.

Tags: ChangeClimategreenlandmeltingSheet

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Biology

These fig trees absorb CO2 from the air and convert it into stone

byMihai Andrei
1 month ago
Science

Climate Change Is Breaking the Insurance Industry

byMihai Andrei
3 months ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
4 months ago
Climate

Microplastics May Now Be Messing with Our Weather and Climate. Here’s What That Means

byTibi Puiu
9 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.