ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Swedish company produces the first slab of steel that didn’t require any coal

We've come a long way from peat furnaces and bog iron.

Alexandru MicubyAlexandru Micu
September 3, 2021
in Environment, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Engineers from the SSAB steel-making company have unveiled the world’s first piece of steel cast without burning any coal or fossil fuel. Instead, they used hydrogen to power the process.

The first steel produced using HYBRIT technology. Image credits SSAB

Metalworking and coal burning have been entwined for as long as humanity has been using metals. Coal is a very good source of energy, providing the heat necessary to refine and process most metals. But it is also a source of carbon, a critical chemical in the production of steel, and the compound that allows us to turn metal ores (usually oxides) into actual metals (by leaching out the oxygen).

For most of our history, this wasn’t that much of an issue. Coal smoke is definitely not healthy for you or anyone living near the smeltery or ye olde blacksmith, but overall production of metals was limited in scope — so the environment could absorb and process its emissions.

Today, however, the sheer scale at which we produce metals means that this process has a real impact on the health of the world around us. However, new technology could uncouple the process from coal, and pave the way towards ‘green’ metals. Engineers from the international, Sweden-based steel-making company SSAB have showcased the process, which relies on hydrogen instead of coal to produce the necessary temperatures.

Transition metal

“The first fossil-free steel in the world is not only a breakthrough for SSAB, it represents proof that it’s possible to make the transition and significantly reduce the global carbon footprint of the steel industry,” said Martin Lindqvist, SSAB’s president and CEO, for CNBC.

The “hybrid process” used by SSAB uses hydrogen as fuel to produce the required energy, instead of the traditional approach of burning coal. This process, called HYBRIT (Hydrogen Breakthrough Ironmaking Technology), uses electricity produced through renewable means to produce hydrogen, which is in turn burned to generate heat. Although there is burning involved, it doesn’t produce any pollution — in fact, the only end product is water.

HYBRIT can be used both for the production of iron pellets — the main raw material used by steel foundries — and in the carbon purification process, which is the step that transforms iron into steel. The first piece of HYBRIT steel was produced for the Volvo Group and is going to become a part of the company’s fleet of trucks. A candleholder was also machined from this steel as proof that its mechanical properties are the same as regular steel produced by SSAB.

The candle holder. Image credits SSAB.

“The candle holder, with its softly pleated rays beaming out from the candle, symbolizes the light at the end of the tunnel. It is a symbol of hope. It truly is a piece of the future,” says Lena Bergström, who designed the item.

The steel industry today accounts for roughly 9% of global carbon dioxide emissions, and demand for (as well as production of) steel is steadily increasing.

RelatedPosts

Exoplanets rich in Hydrogen and Helium could be habitable for billions of years
New process can make hydrogen fuel out of seawater without destroying the devices
Adding fibers to hydrogel, a soft material mostly made of water, makes it 5 times tougher than steel
This cheap catalyst might finally make the hydrogen economy work

SSAB developed the process in the context of a joint venture with the government-owned utility Vattenfall and Swedish mining company LKAB. The steel was processed in a pilot plant in the north of Sweden, and full-scale production capability is not expected for another five years or so, according to Reuters. The slab of metal produced so far marks the culmination of over 5 years of research and development of the HYBRIT process.

“The goal is to deliver fossil-free steel to the market and demonstrate the technology on an industrial scale as early as 2026,” a statement form SSAB explained.

Tags: hydrogenmetalssteel

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
Chemistry

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

byRupendra Brahambhatt
2 months ago
Science

Kawasaki Unveils a Rideable Robot Horse That Runs on Hydrogen and Moves Like an Animal

byTibi Puiu
4 months ago
This  artist’s impression shows the planet orbiting the Sun-like star HD  85512 in the southern constellation of Vela (The Sail). This planet is  one of sixteen super-Earths discovered by the HARPS instrument on the  3.6-metre telescope at ESO’s La Silla Observatory. This planet is about  3.6 times as massive as the Earth lis at the edge of the habitable zone  around the star, where liquid water, and perhaps even life, could  potentially exist.
Astronomy

Exoplanets rich in Hydrogen and Helium could be habitable for billions of years

byMihai Andrei
3 years ago

Recent news

This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025

Drone fishing is already a thing. It’s also already a problem

August 15, 2025

Some People Are Immune to All Viruses. Scientists Now Want To Replicate This Ability for a Universal Antiviral

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.