ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Gravitational waves have scientists searching for answers

What's a good way to baffle astronomers? Send a 14 millisecond gravitational wave signal. At least that's what the Universe did.

Jordan StricklerbyJordan Strickler
January 23, 2020 - Updated on May 28, 2021
in Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Gravitational waves were always going to pose more questions than answers — and that’s exactly what they’re doing.

What could have caused the new source of gravitational waves? Astronomers aren’t sure. (IMAGE: Shutterstock)

On January 14, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer picked up a split-second burst of gravitational waves, which are distortions in space-time. So far, it’s not known where the bursts were emitted from.

Generally, such waves are caused by the collision of immensely massive objects such as two black holes or two neutron stars — this is what happened in 2017 and again in April 2019.

However, these collisions generally last longer, whereas the new signals are short and they appear to come in a series from a very localized portion of the universe.

LIGO picked up the signals coming from the constellation Orion, which has some believing that an explosion of the red supergiant Betelgeuse might be forthcoming. Since October, the star — seen as the shoulder on the left side of Orion — has dimmed by a factor of two, something that has never been documented prior. This has some scientists believing that it could occur soonish (sometime between tomorrow or a 100,000 years from now). If it does occur, the star could leave us in spectacular fashion in the form of a supernova, where the glow could be as bright as the moon.

This is what the star Betelgeuse exploding would look like from Earth.

Credit: NHK/Cosmic Front pic.twitter.com/PHJha8NJld

— Wonder of Science (@wonderofscience) January 6, 2020

However, some don’t believe that to be the case. The burst “seems a little too short for what we expect from the collapse of a massive star,” Andy Howell, a scientist at Los Cumbres Observatory Global Telescope Network and an adjunct faculty member in physics at the University of California, Santa Barbara, told Live Science. Howell said that another reason he doesn’t believe this to be the case is that there were no neutrinos detected. Neutrinos are small subatomic particles supernovas are known to release which do not carry a charge.

Another possibility could be noise from LIGO itself, however, the fact that the burst was found by all three LIGO detectors (in Hanford, Washington; Livington, Louisiana; and Piso, Italy) essentially rules this out as well.

RelatedPosts

Double Trouble! Hunting for Supermassive Black Hole Mergers
New type of supernova discovered. Hint: it’s tiny and faint
Ancient supernovae might have contributed to Earth mass extinction
Cosmic fireworks: zombie star explodes, creating massive filament structures

So that leaves astronomers scratching their heads as to what the latest burst could be. At least for now.

“The universe always surprises us,” Howell says. “There could be totally new astronomical events out there that produce gravitational waves that we haven’t really thought about.”

We were expecting gravitational waves to answer questions about the nature of the universe. That they did — but they are also posing pressing questions, for which there seems to be no answer yet.

Tags: betelgeusegravitational wavesLIGOsupernova

ShareTweetShare
Jordan Strickler

Jordan Strickler

A space nerd and self-described grammar freak (all his Twitter posts are complete sentences), he loves learning about the unknown and figures that if he isn’t smart enough to send satellites to space, he can at least write about it. Twitter: @JordanS1981

Related Posts

News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
1 week ago
News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
4 weeks ago
News

Early cosmic explosions may have filled the young universe with water

byJordan Strickler
5 months ago
This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
6 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.