ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

World’s first blue chrysanthemums are lab-engineered but look really pretty

More like GMawwww's.

Alexandru MicubyAlexandru Micu
July 27, 2017
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Naturally blue chrysanthemums are now reality — and it’s all because biochemists at the National Agriculture and Food Research Organization in Tsukuba, Japan toyed around with the flower’s genome.

Sei Arabella coloration.
Image modified after N. Noda et al., 2017.

Blue flowers aren’t that common in nature. Off the top of my head I could recall… morning glory? Maybe forget-me-not’s? Those might be blue. For some reason, it’s just not very popular a color with good old mother nature. And statistically unsurprising, there are many more species that definitely aren’t naturally blue; among then, the chrysanthemum, which flower in shades of pink and red.

However, that’s about to change. Naonobu Noda, a plant biologist at the National Agriculture and Food Research Organization in Tsukuba, Japan, has coaxed a strain of chrysanthemum to turn blue by adding two genes to the plant’s genome.

Heisenberg-blue

According to a color scale put together by the Royal Horticultural Society, most flowers you think are blue are actually shades of violet or purple. Florists and breeders are keen to get their hands on new colors and varieties of plants, and blue is especially sought-after because of its rarity.

However, turning flowers blue (naturally blue, not by dying them) has proven ridiculously difficult up to now. ‘True’ blues, as described by the Royal Horticultural Society’s chart, requires a complex interplay of chemical compounds. The molecules that lend petals, stem, and fruit their colors are known as anthocyanins. These mostly consist of aromatic ring compounds that can shine red, purple, or blue depending on what extra compounds — like sugars or groups of atoms — are tied to them.

Intra-cell conditions, like wall thickness, size, or shape, also factor in, however: so simply taking the anthocyanins from a blue flower and grafting them into a new one won’t turn it blue.

Noda overcame these issues by genetically tailoring reddish chrysanthemums to be blue. First, he grafted a gene from a bluish flower called the Canterbury bell into a chrysanthemum to make it take a purple hue instead. Then, Noda and his colleagues mixed in a second gene, this one taken from the blue-flowering butterfly pea. This would dictate the addition of a sugar to the plant’s anthocyanin, taking the flower from purple to full on blue. The team believed a third gene would be required to reach this step, but chemical analyses later revealed that chrysanthemums naturally produce a colorless component that reacted with the modified anthocyanin to create blue.

RelatedPosts

Color X-Ray imaging is just around the corner — and we have the photos to prove it
The real color of water is blue — here’s why
Harvard has an amazing color library – and it’s open to the public
How butterflies have such a beautiful colour

Next, Noda’s team aim on creating blue chrysanthemums that can’t reproduce, so they can be safely commercialized. How commercially successful the flowers turn out to be is still anyone’s bet, given that GMOs are still a hotly debated topic. Perhaps the blue chrysanthemums will finally help swing the public vote — one way or another.

The paper “Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism” has been published in the journal Science Advances.

Tags: Blue flowerChrysanthemumColor

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mind & Brain

Scientists Invent a Color Humans Have Never Seen Before

byMihai Andrei
4 months ago
A plankton bloom in the Barents Sea. Image credits: NASA’s Earth Observatory.
Climate

Climate change is changing the ocean’s color

byFermin Koop
2 years ago
Culture & Society

How on Earth did we start using “once in a blue moon”?

byAlexandru Micu
2 years ago
eye-color-thumb
Human Body

How eye color is determined: from brown to blue

byTibi Puiu
3 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.