ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Prehistoric shrimps traded claws for nets, filtering food like modern whales

Mihai AndreibyMihai Andrei
March 28, 2014
in Biology, Geology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Cambrian fossil is earliest example of large swimming filter-feeder.

An evolutionary explosion

Half a billion years ago, the world was extremely different. We’re in the Cambrian, the first geological period of the Paleozoic Era, which lasted from about 541 to 485 million years ago. Life is diversifying at an incredibly fast rate, into what we call today the “Cambrian explosion“. Basically, nature and evolution started experimenting with a myriad of life forms which were developing to fill in the empty biological niches. Until the Cambrian most organisms were simple, composed of individual cells occasionally organized into colonies, but during the period, they started diversifying at an incredibly fast rate. This is why Cambrian fossils are often remarkable and unique.  Such is the case with Tamisiocaris borealis.

During the Cambrian, giant, fierce shrimp-like predators patrolled the world’s oceans, using sharp claws to snare their prey – it was a dog-eat-dog kind of world. However, Tamisiocaris was more of a gentle giant – using wispy, comb-like frontal appendages roughly 12 centimetres long to sweep up plankton as small as 0.5 millimetres. A new study conducted by University of Bristol researchers documents how it used these specialized appendages to filter out plankton, in a way much like whales to today.

How whales eat

You’d think that something as big as a whale eats something big, right? Well, you couldn’t be further from the truth! Many whales eat small organisms caught by straining seawater through a comblike structure found in the mouth called baleen. This is also the case of the blue whale – the largest creature to have ever existed on Earth. Curious that the largest thing on our planet would eat some of the smallest things on our planet, but that’s just evolution for you.

For Tamisiocaris, this strategy had a very clear and efficient purpose: while the competition for marine resources was extremely fierce, by changing its feeding strategy, it no longer needed to compete with the fiercest animals in the ocean for its food supply, says study co-author Jakob Vinther, a palaeobiologist at the University of Bristol, UK. This way, the animals “aren’t really a threat to anyone, and they don’t feel threatened either”, he says. This basically made it unique in the food chain – it had no natural enemies, and no real competitors for its food.

Not the best, but the first

One of the fossil feeding appendages of Tamisiocaris.
Credit: Dr Jakob Vinther, University of Bristol

This type of evolutionary response has happened several times throughout Earth’s geological history, especially when there was an abundance of nutrients in the marine environment – like clearly there was in the Cambrian. But this is the first recorded case. Dr Vinther said:

“These primitive arthropods were, ecologically speaking, the sharks and whales of the Cambrian era. In both sharks and whales, some species evolved into suspension feeders and became gigantic, slow-moving animals that in turn fed on the smallest animals in the water.”

In order to better understand exactly how it fed, researchers developed

RelatedPosts

Darwin’s “advertising” — the magnificent biological art of Ernst Haeckel
Evolution at work: swallows developing shorter wings to avoid cars
One of the world’s oldest bird species discovered in New Zealand
Investing in flashy display pays off for species that mate for life

a 3D computer animation of the feeding appendage to explore the range of movements it could have made.

“Tamisiocaris would have been a sweep net feeder, collecting particles in the fine mesh formed when it curled its appendage up against its mouth,” said Dr Martin Stein of the University of Copenhagen, who created the computer animation. “This is a rare instance when you can actually say something concrete about the feeding ecology of these types of ancient creatures with some confidence.”

This discovery changed what researchers thought about them by 180 degrees – they believed Tamisiocaris to be nothing more than a failed evolutionary experiment – but the primitive arthropod was a pioneer, much ahead of its time:

“We once thought that anomalocarids were a weird, failed experiment,” said co-author Dr Nicholas Longrich at the University of Bath. “Now we’re finding that they pulled off a major evolutionary explosion, doing everything from acting as top predators to feeding on tiny plankton.”

 

Tags: cambriancambrian explosionevolution

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

Geology

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

byTudor Tarita
3 weeks ago
butterfly plants
Animals

How Some Butterflies Fooled Evolution and Developed a Second “Head”

byTudor Tarita
4 weeks ago
Genetics

These Wild Tomatoes Are Reversing Millions of Years of Evolution

byTudor Tarita
1 month ago
Biology

Scientists Created an Evolution Engine That Works Inside Animal Cells Like a Biological AI

byTibi Puiu
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.