ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Scientists successfully undo cocaine-induced cardiovascular damage in mice

Modulating a cocaine pathway dramatically reduced heart damage in mice on cocaine.

Francesca SchiopcabyFrancesca Schiopca
February 27, 2018
in Diseases, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

People aged 70 and over who exercise regularly have the bodies of 40-year-olds
Red meat might be passport to untimely death
AI eye checks can detect heart diseases in less than a minute
Studies conclude “COVID toes” are unrelated to COVID-19

Researchers at the Miller School of Medicine, University of Miami, discovered a potential new pathway to treat the devastating effect of cocaine on the cardiovascular system. They found out that excess levels of reactive oxygen species (ROS), molecules known to be found in the aortas of hypertensive animals and humans, are also involved in cocaine-related cardiovascular disease.

Buy art not cocaine.
Image credits Dave O / Flickr.

ROS are a type of unstable molecules that contain oxygen and rapidly react with other chemical molecules in a cell. An excess of reactive oxygen species inside cells may cause DNA, RNA, and protein damage, and can lead to cell death.

Scientists discovered that cocaine activates the molecule microRNA (miR)-30c-5p, increasing ROS levels in the circulatory system. The team also found that by blocking the activation of miR-30c-5p, they could dramatically reduce damage to the cardiovascular system.

“The biggest surprise to us was that the modulation of a single miRNA-mRNA pathway could have such a profound effect on cardiovascular function,” says Chunming Dong, M.D., study senior author and professor of medicine at the University of Miami.

“This also suggests that targeting this one pathway may have significant therapeutic benefit, which is an exciting possibility.”

The team performed their research using mice. They injected the animals with cocaine and assessed their circulatory health: the mice had high blood pressure, excess levels of ROS, and stiff blood vessels. All these are markers of cardiovascular disease. Researchers also observed a buildup in the miR-30c-5p molecule. When scientists administered cocaine but treated the mice with antioxidants, they managed to inhibit the excessive accumulation of miR-30c-5p and the mice showed no changes in blood pressure, vessel elasticity, or ROS levels.

Doctor Dong says that this is the first study to identify the role of miR-30c-5p in cocaine-related cardiovascular disease. He also notes that the study has some limitations due to the fact that the experiments were only conducted on mice. His research team plans to examine human patients as well, to see if this targeted pathway is viable.

The paper was published in the journal Hypertension, on February 26, 2018.

Tags: antioxidantblood vesslescardiovascularcardiovascular diseasecocainedamageheart diseasepathwayros

Share14TweetShare
Francesca Schiopca

Francesca Schiopca

Related Posts

Diseases

This Test Could Catch Heart Trouble Years Before It Strikes For Under $7

byTudor Tarita
2 months ago
Health

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

byTibi Puiu
2 months ago
Health

Taking care of your teeth is also good for your heart health

byAlexandra Gerea
3 months ago
News

Ditch the Butter. Switching to Plant-Based Oils Could Add Years to Your Life

byAlexandra Gerea
3 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.