Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Science

Scientists successfully undo cocaine-induced cardiovascular damage in mice

Modulating a cocaine pathway dramatically reduced heart damage in mice on cocaine.

Francesca Schiopca by Francesca Schiopca
February 27, 2018
in Diseases, Science

Researchers at the Miller School of Medicine, University of Miami, discovered a potential new pathway to treat the devastating effect of cocaine on the cardiovascular system. They found out that excess levels of reactive oxygen species (ROS), molecules known to be found in the aortas of hypertensive animals and humans, are also involved in cocaine-related cardiovascular disease.

Buy art not cocaine.
Image credits Dave O / Flickr.

ROS are a type of unstable molecules that contain oxygen and rapidly react with other chemical molecules in a cell. An excess of reactive oxygen species inside cells may cause DNA, RNA, and protein damage, and can lead to cell death.

Scientists discovered that cocaine activates the molecule microRNA (miR)-30c-5p, increasing ROS levels in the circulatory system. The team also found that by blocking the activation of miR-30c-5p, they could dramatically reduce damage to the cardiovascular system.

“The biggest surprise to us was that the modulation of a single miRNA-mRNA pathway could have such a profound effect on cardiovascular function,” says Chunming Dong, M.D., study senior author and professor of medicine at the University of Miami.

“This also suggests that targeting this one pathway may have significant therapeutic benefit, which is an exciting possibility.”

The team performed their research using mice. They injected the animals with cocaine and assessed their circulatory health: the mice had high blood pressure, excess levels of ROS, and stiff blood vessels. All these are markers of cardiovascular disease. Researchers also observed a buildup in the miR-30c-5p molecule. When scientists administered cocaine but treated the mice with antioxidants, they managed to inhibit the excessive accumulation of miR-30c-5p and the mice showed no changes in blood pressure, vessel elasticity, or ROS levels.

Doctor Dong says that this is the first study to identify the role of miR-30c-5p in cocaine-related cardiovascular disease. He also notes that the study has some limitations due to the fact that the experiments were only conducted on mice. His research team plans to examine human patients as well, to see if this targeted pathway is viable.

The paper was published in the journal Hypertension, on February 26, 2018.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Sitting down all day? Doing 30-40 minutes of physical activity is enough to undo the damage
  2. New cancer vaccine successfully eliminates tumors in mice
  3. Anti-frostbite cream successfully tested on mice
  4. 3 out of 4 black adults have cardiovascular problems by the age of 55
  5. Scientists propose cocaine e-cigarettes to curb drug abuse
Tags: antioxidantblood vesslescardiovascularcardiovascular diseasecocainedamageheart diseasepathwayros

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW