ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Toy-inspired “Buckliball” paves the way towards a new class of engineering structures

Tibi PuiubyTibi Puiu
March 27, 2012 - Updated on April 22, 2023
in Research, Science, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit

buckliball

Scientists at MIT and Harvard University teamed up to figure out what would be the simplest 3-D structure capable of collapsing and morphing due to instability. Their inspiration came after the scientists came across a popular toy, spherical in shape and fitted with movable parts and hinges, which allows it to easily dimple in size reversibly. Based on this toy, the researchers created the  “buckyball,” a hollow, spherical object made of soft rubber with no movable parts, which can turn into a smaller ball, 46 percent of its original size.

Its name was attributed since it resembles a buckyball, and because it makes us of the instability phenomenon known as buckling, most often in practice an effect which is sought to be avoided.

“In civil engineering, buckling is commonly associated with failure that must be avoided. For example, one typically wants to calculate the buckling criterion for columns and apply an additional safety factor, to ensure that a building stands, says  Pedro Reis, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering and Mechanical Engineering at MIT. “We are trying to change this paradigm by turning failure into functionality in soft mechanical structures. For us, the buckliball is the first such object, but there will be many others.”

The buckliball has 24 special dimples arranged in a specific pattern for optimal buckling, which was induced by researchers by sucking the air of the buckliball with a syringe. When its thing ligaments buckle, the thicker ligaments rows undergo a series of movements the researchers refer to as a “cooperative buckling cascade.” Some of these thick ligaments rotate clockwise, while other counterclockwise, but interestingly they all come together harmoniously. Thus, the buckliball morphs from a circular structure into a rhombicuboctahedron at about half of its original size.


Morphable structures which make us of predictable buckling such as the buckyball have a range of application where they might be effectively used, be it on the micro or macro scale – a football stadium with an easily collapsible buckly dome; tiny drug-delivery capsules or soft movable joints requiring no mechanical pieces.

“The buckliball not only opens avenues for the design of foldable structures over a wide range of length scales, but may also be used as a building block for creating new materials with unusual properties, capable of dramatic contraction in all directions,” says Katia Bertoldi, an assistant professor in applied mechanics at Harvard.

The findings were published in the journal Proceedings of the National Academy of Sciences.

[source MIT]

RelatedPosts

Harvard Bought a $27.50 ‘Copy’ of Magna Carta That Turned Out To Be a Genuine Manuscript of the “Most Famous Single Document in the History of the World”
New metamaterial focuses radio waves with extreme precision similar to Star Wars’ Death Star
Meet the “Ice Man” saving Himalayan farms with artificial glaciers
How to make photosynthetic solar panels, MIT scientist explains
Tags: engineeringharvardmechanical engineeringmitstructural engineering

ShareTweetShare
Tibi Puiu

Tibi Puiu

Related Posts

Science

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

byMihai Andrei
3 weeks ago
History

Harvard Bought a $27.50 ‘Copy’ of Magna Carta That Turned Out To Be a Genuine Manuscript of the “Most Famous Single Document in the History of the World”

byTibi Puiu
4 weeks ago
Home science

This is absolutely the best way to crack an egg, according to science

byTudor Tarita
4 weeks ago
Environment

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

byMihai Andrei
2 months ago

Recent news

The Real Singularity: AI Memes Are Now Funnier, On Average, Than Human Ones

June 13, 2025

Scientists Turn Timber Into SuperWood: 50% Stronger Than Steel and 90% More Environmentally Friendly

June 13, 2025

A Massive Particle Blasted Through Earth and Scientists Think It Might Be The First Detection of Dark Matter

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.