ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers create fuel from water, CO2, and artificial photosynthesis

The technology isn't yet ready for the market -- but it's not far off, either.

Alexandru MicubyAlexandru Micu
May 24, 2019
in Chemistry, Green Living, News, Renewable Energy, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

New research at the University of Illinois is bringing working artificial photosynthesis one step closer to reality.

Leaf.
Image via Pixabay.

The team has successfully produced fuel from water, carbon dioxide, and visible light through artificial photosynthesis. Their method effectively converts carbon dioxide into longer, more complex molecules, like propane. When fully developed, artificial photosynthesis of this kind could be used to store solar energy in chemical bonds (i.e. fuel) for peak-demand times.

Sunfuel

The goal here is to produce complex, liquefiable hydrocarbons from excess CO2 and other sustainable resources such as sunlight,” said Prashant Jain, a chemistry professor and co-author of the study.

“Liquid fuels are ideal because they are easier, safer and more economical to transport than gas and, because they are made from long-chain molecules, contain more bonds — meaning they pack energy more densely.”

Plants use photosynthesis to capture energy from sunlight in the form of glucose. Glucose is a relatively energy-dense compound (it’s a sugar), so plants can effectively use it as a type of chemical energy that they assemble from (relatively energy-poor) CO2. Researchers have long strived to recreate this process in the lab, with various degrees of success, as it holds great promise for clean energy applications.

The new study reports on probably the most successful attempt to emulate photosynthesis so far. The artificial process the team developed draws on the same green light that powers photosynthesis in plants. It mixes CO2 and water into fuel with a little help from gold nanoparticles that serve as a catalyst. The electron-rich particles of gold absorb green light and handle the transfer of protons and electrons between water and CO2 — in broad lines, playing the same role as the pigment chlorophyll in natural photosynthesis.

Gold nanoparticles work particularly well in this role, says Jain, because their surfaces interact with CO2 molecules in just the right way. They’re also pretty efficient at absorbing light and do not break down or degrade like other metals do.

While the resulting fuel can simply be combusted to retrieve all that energy, it wouldn’t be the best approach, the team writes. Simply burning it re-releases all the CO2 back into the atmosphere, which is counterproductive to the notion of harvesting and storing solar energy in the first place, says Jain.

“There are other, more unconventional potential uses from the hydrocarbons created from this process,” he says.

“They could be used to power fuel cells for producing electrical current and voltage. There are labs across the world trying to figure out how the hydrocarbon-to-electricity conversion can be conducted efficiently.”

Exciting though the development might be, the team acknowledges that their artificial photosynthesis process is nowhere near as efficient as it is in plants.

RelatedPosts

People tend to shower more efficiently when they have real-time data of their usage
The man who farms the sea
Vegetation on the planet grew by twice the size of mainland USA due to rising CO2 levels
Trump Forest wants to compensate for the POTUS’ climate policy by planting 100 new billion trees

“We need to learn how to tune the catalyst to increase the efficiency of the chemical reactions,” he said.

“Then we can start the hard work of determining how to go about scaling up the process. And, like any unconventional energy technology, there will be many economic feasibility questions to be answered, as well.”

The paper “Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid” has been published in the journal Nature Communications.

Tags: Artificialco2fuelPhotosynthsiswater

ShareTweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Mars waterbeds
News

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

byJordan Strickler
3 weeks ago
Biology

These fig trees absorb CO2 from the air and convert it into stone

byMihai Andrei
3 weeks ago
News

Scientists Ranked the Most Hydrating Drinks and Water Didn’t Win

byTibi Puiu
4 weeks ago
Environment

New Global River Map Is the First to Include River Bifurcations and Canals

byRebecca Owen
3 months ago

Recent news

A graphical depiction of an atom with the electrons around the nucleus.

After 100 years, physicists still don’t agree what quantum physics actually means

July 30, 2025

Scientists Analyzed a Dinosaur’s Voice Box. They Found a Chirp, Not a Roar

July 30, 2025

Scientists Say Junk Food Might Be as Addictive as Drugs

July 30, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.