ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Agriculture

Growing crops in the dark with “electro-agriculture” can revolutionize food production and free up over 90 percent of farmlands

In the future, photosynthesis could be replaced with electro-agriculture, a process that is four times more efficient and may do wonders for food security.

Rupendra BrahambhattbyRupendra Brahambhatt
November 7, 2024
in Agriculture, Environment, News, World Problems
A A
Edited and reviewed by Tibi Puiu
Share on FacebookShare on TwitterSubmit to Reddit
A scientist checks crops grown in an indoor environment. Image credits: ThisIsEngineering/Pexels

The two major challenges facing food production are its dependency on weather conditions and the need for large tracts of arable land. But a new study is offering a glimpse into a future where we might not need either.

Researchers have developed a method called electro-agriculture, which uses renewable energy and carbon dioxide to grow crops indoors. This innovative approach could transform farming as we know it—and perhaps even allow astronauts to grow food in space.

If we grew all the food in the US using this approach, farmland requirements could drop by 94 percent, the researchers claim.

“The technology enables food production in vertically integrated systems, reducing the land requirement for traditional crop cultivation. For example, if fully implemented in the U.S., electro-ag could potentially reduce agricultural land use from 1.2 billion acres to just 0.14 billion acres,” Feng Jiao, one of the study authors and a professor at Washington University in St. Louis (WashU), told ZME Science. 

Such dramatic reductions in agricultural land would free up vast areas for ecosystem restoration and carbon sequestration.

Electro-agriculture versus photosynthesis

Most edible plants produce their food through photosynthesis, a process in which they capture sunlight and use its energy to turn carbon dioxide from the air and water from the soil into glucose —- a type of sugar that provides energy to plants. However, a major challenge with photosynthesis is that it is a highly inefficient food production method, converting only about one percent of sunlight into glucose.

“Photosynthesis inherently has a low solar-to-food energy conversion efficiency, typically only about 1%, which limits the productivity of conventional agriculture,” Feng said.

Additionally, traditional farming occupies nearly half of the world’s habitable land, contributes to high greenhouse gas emissions, and is sensitive to climate conditions. This makes it difficult to sustain photosynthesis-driven food production amid changing weather patterns.

Electro-agriculture on the other hand, uses renewable energy from sources like solar cells to convert CO2 (from the air) into acetate. Plants can use this acetate to fulfill their carbon and energy requirements without relying on sunlight or large amounts of land because the process can be scaled vertically.  

RelatedPosts

A hotter Arctic means more extreme weather elsewhere on the globe
Our groundwater resources are getting depleted, but there’s still time to act
China’s emissions now exceed all developed countries combined
Most Americans overestimate how healthy their diets are; the most accurate are those with poor-quality diets

“Electro-agriculture can be integrated with plants by feeding them acetate produced from CO2 electrolysis. Genetic modifications may be required to optimize plants for acetate utilization, enabling them to bypass photosynthesis and use acetate for energy and biomass production through the glyoxylate cycle,” Feng added.

The glyoxylate cycle is the process that many bacteria, fungi, and plants use to make food in the dark. According to the researchers, real-world testing has shown promising results; for instance, a proof-of-concept electro-agriculture system demonstrated a fourfold increase in energy efficiency over photosynthesis. 

Are we ready to change agriculture?

If you live in a developed country, there’s a good possibility you’re bearing the brunt of food inflation and widespread pesticide contamination. If you’re a farmer from an underdeveloped part of the world, you’re most certainly feeling the sting of climate change.

However, once implemented on a large scale, electro-agriculture has the potential to help solve most of these problems. It can make food production more sustainable by significantly reducing the environmental impact of agriculture. Moreover, it could stabilize food prices by making food production less dependent on weather conditions —- improving food security, especially in regions with harsh climates or limited arable land. 

However, this approach is not perfect and comes with some limitations. For instance, it would require significant energy input and an uninterrupted supply of electricity. This could be very challenging in a world where technologies such as artificial intelligence, quantum computing, and electric charging stations are competing for energy.

Large-scale implementation of electro-agriculture would also require setting up giant vertical farms, which require heavy up-front investments and a lot of development time. But before any of this happens, researchers need to show that this technique is 100 percent feasible and scalable.

“The readiness level of electro-agriculture is not yet sufficient for wide-scale commercialization, as more work is needed to improve the stability of CO2 electrolysis systems and enhance the metabolic pathways in plants,” Feng told ZME Science.

Still, the concept holds promise. With further research, electro-agriculture could become a crucial tool in making food production more sustainable, efficient, and secure for a world facing a rapidly changing climate.

The study is published in the journal Joule.

Tags: agricultureclimate changefoodvertical farm

ShareTweetShare
Rupendra Brahambhatt

Rupendra Brahambhatt

Rupendra Brahambhatt is an experienced journalist and filmmaker covering culture, science, and entertainment news for the past five years. With a background in Zoology and Communication, he has been actively working with some of the most innovative media agencies in different parts of the globe.

Related Posts

Champiñón Hongos Naturaleza Setas Reino Fungi
Animal facts

What do Fungi, Chameleons, and Humans All Have in Common? We’re all Heterotrophs

byShiella Olimpos
1 week ago
Genetics

Artificial selection — when humans take what they want genetically

byShiella Olimpos
2 weeks ago
Climate

Climate Change Is Rewriting America’s Gardening Map and Some Plants Can’t Keep Up

byGrace van Deelen
2 weeks ago
Climate

Scientists Create “Bait” to Lure Baby Corals Back to Dying Reefs

byMihai Andrei
1 month ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.