ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Remote sensing

Super-earth planets might have a magnetic field from liquid metals

Tibi PuiubyTibi Puiu
November 23, 2012
in Remote sensing, Research, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Super Earth planet

Of the hundreds of exoplanets discovered thus far, many of them are classed as super-Earths, planets with a mass up to ten times that of our planet. Due to their inherent different structure however, their cores would be far from being similar to that of the Earth, leading many scientist to claim that they might not have a magnetic field. A team of researchers  University of Rochester has shown, however, that a flowing liquid metal might generate magnetic dynamos in super-Earths.

While our planet’s atmosphere is rather thick, it is not at the front line in the war against deadly cosmic radiation. This role is played by the sheltering magnetic field that fends off radiation and makes the Earth a paradise for life. This magnetic field – and that of Mercury, the only other rocky planet known to have a magnetic field – stems from the constant motion of its molten iron core.

Super-Earths on the other hand, because of their extreme mass, would present large viscosities and high melting temperatures at their core. This means that they can’t support a magnetic field.

That is, as the researchers very well put it, if you apply what you know about the Earth to other planets as well. This process of reason works in most cases, however when dealing with totally alien environments, phenomenons that don’t occur in our own back yard might escape scientists.

“For many decades we have usually imagined terrestrial planets — the Earth, its neighbors such as Mars, and distant super-Earths — as all having Earth-like properties: that is, they have a outer shell or mantle composed of nonmetallic oxides, and an iron rich core which is metallic and from which planetary magnetic fields originate,” said R. Stewart McWilliams, a geophysicist at the Carnegie Institution of Washington.

“This rule is central to our thinking about super-Earths, yet it is clearly anthropocentric — that is, we are applying what we know from our own observations on Earth to remote planets for which we can observe very little — and, as for many anthropocentric ideas, we are finding that more imagination is needed to understand such alien worlds.”

Extreme conditions at the core of super-Earths

The researchers  found the magnesium oxide, a common ceramic material found on Earth, can transform into liquid when subjected to the extreme conditions such as those found in the interior of super-Earths. Magnesium’s highly resistant to changes when under intense pressures and temperature, and theoretical predictions claim that it has just three unique states with different structures and properties present under planetary conditions.

To see how the material might perform in extreme conditions on alien worlds, the researchers aimed a high-pulsating laser, that shoots beams in just a billionth of a second, to heat a magnesium oxide sample to temperatures as high as 90,000 degrees Fahrenheit (50,000 Celsius), also squeezing it in the process to pressures 14 million times that of normal Earth atmospheric pressure.   They watched this rocky substance change to a solid with a new crystal structure, and finally into a liquid metal. In the melting process, the material changes its properties radically, going from an electrical insulator into a material that allows electrons to flow easily through it, allowing a magnetic field to form.

RelatedPosts

There are over 700 quintillion planets in the universe — but there’s no place like home
Hunting for exoplanets: past and future
Exoplanet researcher awarded for groundbreaking work
Tomorrow, NASA will announce major “discovery beyond the solar system” during press conference

“Our results show that the usual assumption that planetary magnetic fields originate exclusively in iron cores is too limiting,” McWilliams said. “Magnetic fields might also form within planetary mantles. In fact, this idea has been speculated on for decades, but now we have hard data to show that, indeed, such a ‘mantle-dynamo’ is plausible.”

Previous theories regarding magnesium oxide said that the material may exist in only three states with different structures and properties present under planetary conditions –  solid under ambient conditions (such as on the Earth’s surface), liquid at high temperatures, and another form of solid at high pressure . This last structure had never been observed until now.

The implications of these findings suggest that the metallic, liquid phase of magnesium oxide could well exist today in the deep mantles of super-Earth planets, as well as the newly-observed solid phase. This means that they might very well harbor a magnetic field which might protect its surface from radiation and allow life to blossom.

“It is often said that life on planets may require the presence of a strong magnetic field to protect organisms from dangerous radiation from space such as cosmic rays — at least this may be true for certain types of life, similar to humans, that live on a planet’s surface,” McWilliams said. “We find that magnetic fields may occur on a wider range of planets than previously thought, possibly creating unexpected environments for life in the universe.”

“Everyone, both scientists and the public, should keep in mind that super-Earths are, and probably will remain for some time, a big mystery,” McWilliams said. “It is easy to speculate as to their properties — to draw a picture of one, for example — but quite difficult to make certain conclusions such as we have for our own Earth. This is both exciting and daunting — there are many possibilities to explore, but scientists have much work to do. We hope the public has a lot of patience.”

Findings were reported in the journal Science.

 

Tags: exoplanetsuper earth

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

A Planet 900 Light-Years Away Has Weather So Extreme “It Feels Like Science Fiction”. It’s 70,000 km/h Winds Carry Vaporized Iron and Even Titanium

byTibi Puiu
4 months ago
This artist’s visualisation of WASP-127b, a giant gas planet located about 520 light-years from Earth, shows its newly discovered supersonic jet winds that move around the planet’s equator. With a speed of 9 km per second (33 000 km/h), this is the fastest jetstream of its kind ever measured in the Universe. By tracking the speed of molecules in the atmosphere with the CRIRES+ instrument on ESO’s Very Large Telescope, researchers found that one side of the planet’s atmosphere is moving towards us and the other away from us. This indicates that there is a powerful wind current going around the planet. 
News

A Gas Giant 500 Light-Years Away Has the Fastest Winds Ever Recorded: A Staggering 33,000 km/h

byTibi Puiu
5 months ago
Geology

Exoplanets may have more water than we thought — but there’s a catch

byMihai Andrei
10 months ago
News

Astronomers baffled by ‘fluffy’ exoplanet with the density of cotton candy

byTibi Puiu
1 year ago

Recent news

Fish Feel Intense Pain For 20 Minutes After Catch — So Why Are We Letting Them Suffocate?

June 11, 2025

Scientists Used Lasers To Finally Explain How Tiny Dunes Form — And This Might Hold Clues to Other Worlds

June 11, 2025

Your new phobia, unlocked: a rogue hole in the ocean

June 11, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.