Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Complex simplicity is the best for music

Mihai Andrei by Mihai Andrei
January 24, 2011
in Mind & Brain, Studies

Art and science almost always seem to be standing at opposite seats of the table, so it’s really hard to explain one through the means of the other. But if we were to look at some of the best compositions in the world, music that transcended time and delighted generations and generations, what would we find ? According to a new study published by BioMed Central’s open access journal BMC Research Notes, the brain does some really interesting things when listening to music, which could provide some insight on this matter.

Basically, it simplifies complex patterns, in pretty much the same way music compression formats reduce audio files, by removing redundant data and identifying patterns. There is a theory that’s been around (and accepted) for a long time that we are hardwired to find simple patterns most pleasurable. Dr. Nicholas Hudson used ‘lossless’ music compression programs to mimic the brain’s ability to condense audio information and for this purpose, he compared the amount of compressibility for a random noise and for different types of music.

The results seemed to be pretty relevant: random noise could be condensed to no less than 86% of its original file size, techno, rock and pop all were around 60%, while some apparently complex masterpieces, such as Beethoven’s 3rd Symphony compressed to 40%.

Dr Nicholas Hudson says “Enduring musical masterpieces, despite apparent complexity, possess high compressibility” and that it is this compressibility that we respond to. So whether you are a die hard classicist or a pop diva it seems that we chose the music we prefer, not by simply listening to it, but by calculating its compressibility.

So if you’re trying to compose music that will live on forever, you should focus on music which sounds complex, but is reductible to patterns as simple as possible.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. 10 Beautiful Visual Mathematical Proofs: Elegance and Simplicity
  2. Chimps like African and Indian music – not Western music
  3. Tell me what music you like and I’ll tell you how you think – Music preference connected to cognitive style
  4. Artificial intelligence can write classical music like a human composer. It’s the first non-human artist whose music is now copyrighted
  5. Listening to music you like makes you more altruistic
Tags: brainmusicpatternScience

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW