ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

Scientists cloak 3D object in microwave spectrum

Tibi PuiubyTibi Puiu
January 26, 2012
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

The much dreamed off invisibility cloak is just a few tiny steps away, after remarkable research in the field, many backed by military interests, have sparked some amazing advances. In the last few years alone, scientists have managed to successfully cloak various objects either using meta-materials that bent light around an object to conceal it or electrically stimulated nanotubes which cause the human eye to perceive a mirage-like effect and thus conceal the object. Just a few weeks ago, scientists manage to hide an event in time after they developed a time cloak.

Microwaves can be seen being blocked and scattered without (l), and "reconstructed" (r) with the cloak
Microwaves can be seen being blocked and scattered without (l), and "reconstructed" (r) with the cloak

However, we’re still in a highly incipient state as far as a full-on invisibility cloak in its all rightful manner is concerned. You see, these devices are only capable of rending a particular object only in 2D, from a particular angle, which although doesn’t seem particularly useful, it’s still been a remarkable progress. Now, in a recently published paper, University of Texas scientists describe how they’ve been able to use plasmonic meta-materials to make an 18-inch cylindrical tube invisible – a full 3-D cloak.

What we actually perceive with our eyes is actually information transmitted by light which bounces off objects in our surroundings, as its constituent atoms absorb, transmit or reflect electric and magnetic fields. One might say that the world around us, as we visually see it, is not the real one, but its reflection. Bearing in mind this, if one can manipulate or stop light from bouncing off an object altogether, than that object would become invisible.

” That means the object is invisible, from any angle of observation.

“This object’s invisibility is independent of where the observer is,” Professor Andrea Alu, the study’s co-author, tells Danger Room. “So you’d walk right around it, and never see it.”

Plasmonic materials can be designed to have effects on the fields that are precisely opposed to those of the object, and thus cancel out the light scattering from an object. When the plasmonic shell was coated on a cylinder, the two cancelled each other out, and became invisible in the high-frequency wavelengths, like the microwave spectrum – it remained perceivable as always in the visual wavelength spectrum, however.

The plasmonic material shell is, in essence, a photo-negative of the object being cloaked, so for this to work the shell needs to be tailored specifically for the object to be cloaked. Cloaking in visible light, hiding more complex shapes and materials, is still extremely distant, however these recent advances, with this latest one to bolster as well, proves that it’s far from being impossible.

“We have some ideas to make it work,” Alu says. “But the human eye is not our priority. Right now, we’re focused on improving biomedical imaging.”

 

The study was presented in a recent edition of the New Journal of Physics.

RelatedPosts

What Light tells us about the Universe
Sunstone viking “magical compass” proved by science
World record wireless transmission of 100 Gbit/s achieved
New metamaterial focuses radio waves with extreme precision similar to Star Wars’ Death Star
Tags: Invisibilitylight spectrummetamaterialmicrowaveoptical illusionoptics

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Animals

This Moth’s Wings Create a Mind-Bending 3D Optical Illusion to Avoid Being Eaten

byTibi Puiu
6 months ago
Future

Scientists Used Quantum Physics to Help AI Fall for Optical Illusions

byTibi Puiu
10 months ago
Physics

Rube Goldberg: The beautiful and timeless appeal of complex, useless contraptions

byTibi Puiu
12 months ago
Great Pics

M&Ms on checkerboard trick your brain

byTibi Puiu
12 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.