ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

NASA plans to make airplanes cleaner and 50% more fuel efficient by reviving the wing truss

NASA plans to improve today's planes with a blast from the past -- re-implementing a structure known as a wing truss would reduce fuel consumption and carbon emissions of common commercial aircraft by as much as 50%, according to computational models.

Alexandru MicubyAlexandru Micu
April 5, 2016
in News, Physics, Pollution, Research, Science, Technology, World Problems
A A
Share on FacebookShare on TwitterSubmit to Reddit

NASA plans to improve today’s planes with a blast from the past — re-implementing a structure known as a wing truss would reduce fuel consumption and carbon emissions of common commercial aircraft by as much as 50%, according to computational models.

Early aircraft were… Well they were horrible, really. These flimsy cloth-and-wire machines offered their pilots virtually no protection against the cold. Their open cabins also meant that it was impossible to create a pressurized environment so the pilots wouldn’t black out from lack of oxygen at high altitudes. Thankfully that wasn’t much of a problem as their engines barely had enough power to get them off the ground in the first place.

This meant that early pioneers of aircraft design had to squeeze every ounce of lift from their designs, while keeping them as light as possible. Designs such as the biplane, triplane and wacky multiplane generated enough lift even at low speeds but also huge amounts of drag, and were thus limited in maximum speed.

Another piece of technology from the era however, the wing truss, has recently caught NASA engineers’ as a possible avenue for improvement of modern designs.

A wing truss is a support structure connecting the body of the plane to the wing, and can be seen in modern ultra-light prop-planes such as the Cessna 182.

Trust in the truss.
Image credits wikimedia – author unknown.

By transferring part of the strain to the fuselage, trusses allow for longer, thinner but also lighter wings to be constructed without sacrificing lift. Lower weight and improved carrying capacity would translate into lower much more efficient use of engine power, according to NASA:

“Researchers expect the lighter weight, lower drag truss-braced wing to reduce both fuel burn and carbon emissions by at least 50% over current technology transport aircraft, and by 4 to 8% compared to equivalent advanced technology conventional configurations with unbraced wings.”

But there’s a reason trusses were abandoned in the first place: they add drag and disturb the flow of air around the aircraft. But, by using modern digital modeling techniques, engineers can design around this problem.

RelatedPosts

This animation shows how European air traffic has plummeted due to the pandemic
Fossil Friday: Alcmonavis poeschli, the second-oldest bird we’ve ever found
Google’s Wing makes the first drone-borne delivery in the US
NASA’s morphing wing will make airplanes smoother, more efficient

“Using computational results showing how air would flow around the model, they [the researchers] modify the dimensions and shape of the wing and truss to improve areas that may generate undesirable air flow that would increase drag and reduce lift. Then engineers test models in a wind tunnel using multiple experimental techniques to validate the computations and aircraft performance predictions.’

If higher fuel efficiency and reduced emissions aren’t enough to impress you, there’s another quieter benefit to consider: trussed wings produce less noise during flight, meaning you won’t hear jets roaring overhead anymore.

 

Tags: AiplanesCessnafuelkeroseneLiftPlanesTrussWing

Share2TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

News

This Mind-Blowing Antimatter Rocket Could Take Us to the Stars Within a Lifetime. But How Long Until We Get One?

byTibi Puiu
6 months ago
Sewage sludge dry.
Biology

Purple bacteria turn sewage into hydrogen fuel

byAlexandru Micu
4 years ago
News

How Mars brine could produce breathable air and fuel for a colony

byMihai Andrei
5 years ago
Health

A new study on biomass fuel says smoke is more damaging to lungs than we assumed

byAlexandru Micu
5 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.