ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

New method allows large molecules to get squeezed through cell membranes

Tibi PuiubyTibi Puiu
January 23, 2013
in Biology, Health, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

A group of researchers at MIT have devised a new method for infiltrating cells with large molecules such as nanoparticles or proteins that is a lot more non-intrusive and doesn’t damage the cell. Imaging target cells or growing more stable stem cells might thus be possible with this method.

As cells squeeze through a narrow channel, tiny holes open in their membranes, allowing large molecules such as RNA to pass through. Image: Armon Sharei and Emily Jackson
As cells squeeze through a narrow channel, tiny holes open in their membranes, allowing large molecules such as RNA to pass through.
Image: Armon Sharei and Emily Jackson

Every cell has a membrane, which is put to great use as it protects the cell’s inner environment by regulating what gets in and what gets out. Typically, you don’t want foreign molecules entering your cells, but sometimes you do. Various methods have been employed to breach cell membranes and introduce other bodies, however these tend to be intrusive and sometimes can lead to the damaging and even destruction of the cell.

The MIT method of introducing large molecules in cell is a lot safer and efficient and implies squeezing the cell through a narrow construction just enough for tiny, yet temporary, gaps to surface. Prior to squeezing the cell, large molecules – be it RNA, proteins or nanoparticles – are tasked to float outside cell, such that when the holes pop these slide through the membrane instantly.

Through this technique the MIT researchers were able to deliver reprogramming proteins which turned the target cells into pluripotent stem cells – notoriously difficult to generate efficiently – with a success rate 10 to 100 times better than any other existing method. A simply massive advancement. Also, they’ve also tested the method with other large molecules like special nanoparticles, like carbon nanotubes or quantum dots, to image cells and thus monitor their activity.

“It’s very useful to be able to get large molecules into cells. We thought it might be interesting if you could have a relatively simple system that could deliver many different compounds,” says Klavs Jensen, the Warren K. Lewis Professor of Chemical Engineering, professor of materials science and engineering, and a senior author of a paper describing the new device in this week’s issue of the Proceedings of the National Academy of Sciences.

The team’s fantastic research builds upon previous work, when Jensen and Robert Langer, the David H. Koch Institute Professor at MIT and also a study lead author, forced molecules into cells as they flowed through a microfluidic device. The process was slow and not very effective, but it was during this time that the researchers learned that if you squeeze a cell just right now, tiny holes will appear – pure windows of opportunity.

Capitalizing on this, the scientists then proceeded to adjust their set-up and devised some rectangular microfluidic chips, no larger than a quarter, fitted with 40 to 70 parallel channels.  Cells are suspended in a solution with the material to be delivered and flowed through the channel at high speed — about one meter per second. Halfway through the channel, the cells pass through a constriction about 30 to 80 percent smaller than the cells’ diameter. The cells don’t suffer any irreparable damage, and they maintain their normal functions after the treatment.

“This appears to be a very broadly applicable approach for loading a diversity of different compounds into a diversity of different cells,” says Mark Prausnitz, a professor of chemical and biomolecular engineering at Georgia Tech, who was not part of the research team. “It’s a really nice example of taking devices from the world of engineering and microelectronics and using them in quite different ways to solve problems in medicine that could have really great impact.”

 

RelatedPosts

Scientists create functional blood vessels from adult stem cells
Nanotubes seen inside living animals
Researchers design carbon yarn that generates energy from motion or waste heat
Scientists grow mice from dish-cultured sperm and egg

source: MIT

Tags: carbon nanotubesnanoparticlespluripotent stem cellsquantum dots

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

byTibi Puiu
2 months ago
Health

Paralyzed man can stand again after receiving stem cell treatment in Japan

byTibi Puiu
3 months ago
Environment

Air pollution can contaminate your heart cells with metal nanoparticles from infancy

byAlexandru Micu
5 years ago
Biology

New shape-shifting metal particles shred drug-resistant bacteria to bits

byAlexandru Micu
5 years ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.