ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Materials

Superhydrophobic surface causes water to jump like a ball

Dragos MitricabyDragos Mitrica
June 2, 2014
in Materials, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Superhydrophobic surfaces are surfaces that not only don’t get wet, but they actually repel water. This is the so-called lotus effect, named after the superhydrophobic leaves of the lotus plant (as usually, nature’s been doing long before we have). We’ve written time and time again about the amazing achievements in the field of superhydrophobics – and this is no exception.

Repelling water


In a basement lab on Bringham Young University’s campus (BYU), mechanical engineering professor Julie Crockett analyzes water as it bounces off and rolls like a ball. This happens because Crockett and her colleague Dan Maynes created a superhydrophobic sloped channel that  repels the water.

“Our research is geared toward helping to create the ideal super-hydrophobic surface,” Crockett said. “By characterizing the specific properties of these different surfaces, we can better pinpoint which types of surfaces are most advantageous for each application.”

While some research with such surfaces has already reached the shelves with substances that keep your shoes or clothes dry, the two professors want to provide large-scale solutions for society.

The materials exhibit this effect because their surfaces are riddled with micro posts or with ribs and cavities one tenth the size of a human hair. In order to develop these surfaces, researchers used a process similar to photo film development that etches patterns onto CD-sized wafers. They then coated them in a water-resistant film, like Teflon, but that’s just the start of it: in order to improve the materials, they then study the interactions between the water and the surface with high-speed cameras.

Applications… applications everywhere

RelatedPosts

Iridescence and superhydrophobicity combined on graphene
A computer made from water droplets
Superomniphobic material can avoid any stain – repels almost any liquid
Edible coating can empty every last drop of sticky liquids like ketchup, honey or syrup

A few potential applications for such a technology are:

– solar panels that don’t get dirty or clean themselves when water rolls of them. Or why not – even windows.
– hulls of ships and submarines – coating them in superhydrophobic surfaces would cause less drag, increasing the speed and reducing fuel consumption.
– airplanes wings, helping them better resist in cold and humid conditions.
– showers, tubs, toilets – all could be easier to clean.
– rain-proof glasses.
– biomedical devices, such as syringes that deliver fluids to patients.

However, while there’s a myriad of potential applications, their research focuses on cleaner and more efficient energy generation – especially conventional power plants. Most power plants in the world generate energy by burning coal or natural gas, generating gas that rotates a turbine; once that has happened, the steam needs to be condensed to liquid so it can restart the same cycle all over again. If condensers in power plants would be coated in hydrophobic surfaces, the process could be greatly sped up – increasing generating energy faster and more efficiently.

“If you have these surfaces, the fluid isn’t attracted to the condenser wall, and as soon as the steam starts condensing to a liquid, it just rolls right off,” Crockett said. “And so you can very, very quickly and efficiently condense a lot of gas.”

 

Tags: superhydrophobic

ShareTweetShare
Dragos Mitrica

Dragos Mitrica

Dragos has been working in geology for six years, and loving every minute of it. Now, his more recent focus is on paleoclimate and climatic evolution, though in his spare time, he also dedicates a lot of time to chaos theory and complex systems.

Related Posts

A fly in an air bubble. Credits: Floris van Breugel/Caltech.
Biology

Scuba diving flies use bubbles to feed underwater

byMihai Andrei
8 years ago
Chemistry

Edible coating can empty every last drop of sticky liquids like ketchup, honey or syrup

byTibi Puiu
9 years ago
Super hydrophobic surface
Nanotechnology

Laser-etching pattern turns any metal into a super-hydrophobic surface

byTibi Puiu
11 years ago
The omniphobic material's geometry and close-up structure. (c) Anish Tuteja / University of Michigan
Chemistry

Superomniphobic material can avoid any stain – repels almost any liquid

byTibi Puiu
13 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.