ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Remote sensing

Why there’s supermassive black hole at the center of the Milky Way

Tibi PuiubyTibi Puiu
August 13, 2013 - Updated on October 25, 2017
in Remote sensing, Research, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
At the heart of virtually every large galaxy lurks a supermassive black hole with a mass of a million to more than a billion times our Sun. Most of these black holes are dormant, but a few per cent are 'active' meaning that they are drawing material from their host galaxy inwards, This forms an accretion disc that feeds the black hole. Image credit: Wolfgang Steffen, Cosmovision
At the heart of virtually every large galaxy lurks a supermassive black hole with a mass of a million to more than a billion times our Sun. Most of these black holes are dormant, but a few per cent are ‘active’ meaning that they are drawing material from their host galaxy inwards, This forms an accretion disc that feeds the black hole. Image credit: Wolfgang Steffen, Cosmovision

The general belief surrounding black holes is that they’re massive, but vicious matter gobbling cosmic objects. While it’s true the reputation of black holes as destroyers precede them, we should not forget that they fill an important role in the Universe as creators. Scientists now know that black holes are inexorably linked with galaxies, lying at their center and directly influencing how large a galaxy may grow.

These aren’t your ordinary stellar variety black holes whose mass is just a couple of times that of our sun. No, these are classed as supermassive black holes and can have millions or, in some extreme cases, billion solar masses. Our own galaxy, the Milky Way is no exception. How can scientists, however, know this for sure? After all, you can’t directly observe a black hole, since it captures everything in its vicinity with no exception and this, of course, means light as well. No problem, you can infer it’s there simply by studying the environment around it.

For instance, a group of researchers at UCLA have released some videos showing how a group of stars in the immediate vicinity of the Milky Way’s center (for the sake of argument, we first presume that we don’t know that there’s a black hole there). To observe these orbits, the astronomers had to first peer through the location in the far end of the red spectrum, as typical optical observations are obstructed by thick clouds of gas and dust, as well as the brightness of the stars themselves. A lot of stars were then seen orbiting around … something that didn’t emit any light. First hint there. It’s not enough to tell for sure, though. The best way to do that is to determine the size and mass of the object in question and if these correspond to those of a black hole, then it’s settled. How do you measure something that can’t be seen?

You can’t see it, but you can feel it – the stars orbiting around it sure do, at least. By studying the ellipses of the orbiting stars, astronomers can know how large the object the bodies revolve around is –  it has to be smaller than the narrowest part of the ellipse. Then, using mathematical relations derived from  Kepler’s 3 laws of planetary motion you can find out how massive the object is. All you need to know is the orbital period of a star revolving around it, as well as the star’s distance from the object.

\frac{4 \pi^2}{T^2} = \frac{G M}{R^3}

 

Where T is the period, G is the Gravitational constant, M is the mass of the larger body, and R is the distance between the centers of mass of the two bodies.

RelatedPosts

A Huge, Lazy Black Hole Is Redefining the Early Universe
European Observatory (ESO) assembles 9 gigapixel image with 84 million stars
Supermassive black hole spotted struggling with its galactic meal
Get a glimpse of a black hole’s fury

 

A 3-D video representation of the same orbiting stars around the ‘unknown’ massive object found at the center of our galaxy. Using such ideas and mathematical relations between various cosmic components, astronomers were able to infer how large and how massive the object at the center of our galaxy is.

 

The object is likely 4.1 million solar masses, and 6.2 light hours in diameter (roughly Uranus’ orbit around the Sun). Undoubtedly, something this massive, yet tiny with respect to its mass, can only be a black hole – a supermassive black hole.  So, that’s settled – we now know for certain there’s a supermassive black hole at the center of the Milky Way, but how does it influence our galaxy and all the other for that matter?

Almost a decade ago, researchers calculated that the mass of a supermassive black hole appeared to have a constant relation to the mass of the central part of its galaxy, known as its bulge (think of the yolk in a fried egg). This 1 to 700 relationship supports the notion that the evolution and structure of a galaxy are closely tied to the scale of its black hole.

Another important relation that was observed is that the mass of a supermassive black hole greatly influences the orbital speed of stars in the outer regions of their galaxy:  the larger the black hole, the faster the outer stars travel. We still don’t know enough about black holes, but from the little scientists have been able to study and gather about them, it’s beginning to be rather clear that black holes play a fundamental role in the formation and evolution of the Universe we inhabit today.  You wouldn’t be wrong in saying, for that matter, that we wouldn’t be here in the first place if it weren’t for black holes.

For more, check out our list of amazing black hole facts. 

Tags: black holegalaxiessupermassive black hole

Share7TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

black hole
News

Astronomers Claim the Big Bang May Have Taken Place Inside a Black Hole

byJordan Strickler
1 week ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
1 week ago
News

We Could One Day Power a Galactic Civilization with Spinning Black Holes

byTibi Puiu
2 months ago
News

Black Holes Might Not Be Cosmic Dead-Ends But Rather the Beginning Of White Holes

byTibi Puiu
3 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.