Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Research → Materials

Breakthrough: first time monolayer graphene made in bulk

Tibi Puiu by Tibi Puiu
November 16, 2020
in Materials, News, Physics, Research

Image: Samsung Advanced Institute of Technology & Sungkyunkwan Universit
Image: Samsung Advanced Institute of Technology & Sungkyunkwan Universit

We’ve written extensively about graphene here on ZME Science, awarding it much praise and promise. Truly, if you read a bit about what graphene can do [strength, conductivity, cost, etc], you’ll soon learn to love it. So, why aren’t we seeing graphene used everywhere, from computers to aerospace like so many science papers herald its potential applications? Well, serious graphene research has only been taking place in the past 15 years or so, which makes it too early for mass scale introduction. One particular challenge relates to exactly this necessity: how to manufacturer quality graphene on a mass scale?

A lab in South Korea, supported by consumer electronics giant Samsung, reports they’ve made one of the biggest breakthroughs in graphene research history after scientists there devised a technique that makes the material inexpensive enough for use in the electronics industry. Bolstering claims aside,  the team at  Sungkyunkwan University’s School of Advanced Materials Science and Engineering and the Samsung Advanced Institute of Technology was able to to make large sheets of graphene by growing it on a layer of specially treated germanium.

Making graphene in bulk

To be more precise, the process starts off with a basic, standard silicon wafer – the kind the electronics industry is all to familiar with. A thin layer of Germanium coating is applied to the wafer, which is then emerged in a dilute hydrofluoric (HF) acid solution. This strips off the  naturally forming germanium oxide groups, only leaving hydrogen atoms that are bonded to the germanium underneath. After a series of vacuum thermal treatments, a fairly common vapor deposition is used to deposit a graphene layer atop the H-germanium one. After another series of baking and cooling in vacuum, graphene begins growing in several places and then joins together, merging several small sheets into one large seamless one; a feat that has been very challenging up until now.

Graphene growing on H-terminated germanium. The orange circles are germanium, the little blue dots are hydrogen, and the black dots are carbon (graphene). Photo: Science
Graphene growing on H-terminated germanium. The orange circles are germanium, the little blue dots are hydrogen, and the black dots are carbon (graphene). Photo: Science

Ultimately, it all winds up to peeling off the graphene monolayer monocrystals from the wafer and tada! Concerning quality, the researchers involved say the resulting material is of high quality and low defects. In addition, because a dry process was used, the germanium and silicon wafer can be reused. Currently, the most popular method of producing graphene is on a copper substrate, which is then wastefully burnt away with acid.

Graphene is often touted for its potential to replace silicon in computer chips, which would allow for faster, more efficient computing. But it is also a major candidate for displays — which generally rely on indium tin oxide — because graphene is just an atom thick, transparent and ultra-tough.

[ALSO READ] The Graphene transistor

Before graphene can be used properly to its full potential in electronics, however, scientists need to figure out a way to give it a bandgap [which it doesn’t have in native form], else it can’t be used to make transistors – the backbone of computer chips. According to Samsung, researchers used their graphene manufacturing technique to build some field-effect transistors (GFETs), which performed quite well. For now, that’s about it, but future advancements coupled with this latest manufacturing process, might finally usher in the age of graphene – one that we’ll all be glad to enter… in about 10 to 20 years or so.

The findings were reported in a paper published in the journal Science.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Breakthrough could usher away silicon and make way for graphene transistors
  2. Penta-graphene is stronger and better than graphene – we only need to make it, now
  3. Quantum dot technology breakthrough brings it one step closer to a screen near you
  4. Rubber band producer adds graphene to its bands — to make them last forever
  5. GO dough stands poised to bring graphene and its awesome properties into your life
Tags: graphenemanufacturing

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW