ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

Active learning greatly outperforms passive lecturing in classrooms

Tibi PuiubyTibi Puiu
August 5, 2014
in News, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Homer Simpson gene limits memory and learning ability ?
Physical exercise after learning could improve long-term memory, study finds
SpongeBob helps scientists understand how toddlers think
How outdoor learning helps both students and teachers

BORED_classroom Most University professors still rely on passive lectures to get their subject across. A meta-study which analyzed 225 studies found that active teaching – lectures that actively engage students and make the learning experience two-way – improves grades and significantly reduces fail rates. The findings add to an already body of literature that suggests the current dominant teaching model is underperforming and obsolete.

Revising the way education is being transferred

“It’s no longer necessary to prove that active-learning methods are better than traditional lectures,” says Rory Waterman, a chemistry professor at the University of Vermont who is an advocate for active-learning methods and a coorganizer of the Cottrell Scholars Collaborative New Faculty Workshop. “The field can instead focus on which active-learning methods are most effective and how they can be best implemented.”

Scott Freeman, a biology lecturer and education researcher at the University of Washington, Seattle, and colleagues combed through a myriad of studies looking for data that would tell them what kind of impact active learning has. In their paper, the researchers define active learning  as any method that engages students in the process of learning as opposed to passively listening to a lecture. This includes anything from so-called ‘clickers’ – an audience response device which allows lecture attendees to participate in the lecture actively – to the common, yet proven study groups, big or small. The findings suggests that active learning outperforms passive lecturing on all levels – be it chemistry or physics, small or large groups.

On average, score cards improved by one-third of a letter grade. While this might not seem like much, the importance of active learning becomes striking when we look at how it improves student retention rates. Students in traditional lectures are 55% more likely to receive a grade of D or F or to withdraw from a class than are students being taught with active-learning approaches. This tremendous improvement, the researchers write, costs only 10% of the lecture’s time. So just by engaging students for even five minutes during a lecture, a professor can significantly improve his class’ scores and overall learning – statistically speaking, at least.

Susan Singer, director of the Division of Undergraduate Education at the National Science Foundation, believes active learning is most important in science disciplines, where student retention rates are usually lower than other fields.

The study warns, however, that it’s not enough to implement active learning in your class – you have to do it right, too.

“You can goof it up if you don’t do it right,” Freeman explains. He’s witnessed “clicker abuse” in some classes. “There’s a literature on how to use clickers effectively. People have never read any of those papers. They’re just doing it off the cuff. For a scientist or engineer who’s trained to respect evidence and act on it, it’s just horrifying.”

Eventually, Freeman hopes, the study might help educators who still rely on traditional teaching methods to revise their course and migrate to a more engaged method.

“Universities are still over-reliant on lecture-based teaching,” Waterman says, “so helping faculty identify the minimum or first steps they need to take in their classrooms to see these incredible gains in student performance has always seemed to me to be the most practical way to advance student-centered learning.”

Tags: educationlearningstemTeaching

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Home science

Why December-Born Kids Are Far More Likely to Get Speech Therapy

byMihai Andrei
3 months ago
News

Finland Just Banned Smartphones in Schools

byMihai Andrei
3 months ago
History

The Soviets sent most of its intellectuals to remote gulags. Decades later, those areas became more prosperous

byMihai Andrei
7 months ago
News

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

byMihai Andrei
8 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.