ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Synthetic muscle made from nylon is 100 times stronger than human muscle

Tibi PuiubyTibi Puiu
February 21, 2014
in Chemistry, Discoveries, Health, Materials, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

Sometimes, I come across stories or various research that make me wonder “why the heck hasn’t anyone else thought of this before?” We should be grateful, nevertheless, that researchers from University of Texas at Dallas have found a way to manufacture artificial muscle that is up to 100 times stronger than the flimsy tissue that makes up the human biceps. The material is made out of nylon fibers – the stuff fishnets are made of – that are tensed almost to the upper limit and thermal processed to retain a high energy density.

Like very thin springs, the synthetic muscle is cheap, easy to make and durable. Of course it has some drawbacks, however the researchers envision its introduction in the industry extremely fast considering the facts. Applications include artificial muscles for robots, exoskeleton suits, or automatically heat-regulated window shutters and ventilation systems.

Photograph comparing muscles made by coiling (from left to right) 150 μm, 280 μm, 860 μm and 2.45 mm nylon 6 monofilament fibers. Photo: Science
Photograph comparing muscles made by coiling (from left to right) 150 μm, 280 μm, 860 μm and 2.45 mm nylon 6 monofilament fibers. Photo: Science

The process through which the synthetic sinew is coiled is quite trivially simple. Basically, it boils down to making sure you apply the right tension and weight to the thread when twisting it. Actually, according to the scientists involved in the work, similar nylon coils like the ones they produced can be made by regular people at home.

Nylon or polyethylene gets twisted under high tension over and over again until it reaches a certain strain threshold. Once the plastic can’t twist any more, it starts to coil up on itself like a curled telephone cord. The coil is then thermally treated so it gets locked in place; along with energy stored in the coil. When the resulting coil is heated, it begins to untwist, but in the process the whole whole material begins to compress.

“At first it seems confusing, but you can think of it kind of like a Chinese finger-trap,” says Ray Baughman, a materials scientist with the team. “Expanding the volume of the finger-trap, or heating the coil, actually makes the device shorten.”

By braiding and twisting different threads together and coiling them in different ways, you can end up with different kinds of variations in muscle strength, depending on the kind of application you’re looking for. Also, by blending in conductive wire or wrapping the muscle with a light-absorbing coating, the researchers can control the muscles’ movements with electricity and light instead of direct heat.

RelatedPosts

Papuan weevils have screw-in legs
Scientists grow functioning human muscles from skin cells
Bedtime protein shakes might lead to more muscle gain than daytime protein without adding fat or harming sleep
Collagen networks and hyaluronic acid literally keep you in shape, new study reports
Photo: University of Texas at Dallas.
Photo: University of Texas at Dallas.

At the moment, the nylon artificial muscle isn’t all that efficient. While work is presently underway to solve inefficiency issues, by itself, even in its current form, this research is extremely impressive and will most likely get used in real-world applications real soon. It also is a great example of what you can achieve with readily available materials and technology just by applying novel tricks and strategies.

You can find out more in the paper published just today in the journal Science.

Tags: artificial musclematerial sciencemuscletissue

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Muscle bros love their cold plunges. Science says they don’t really work (for gains)

byMihai Andrei
3 months ago
Protoclone humanoid robot from Clone Robotics.
Future

This Terrifyingly Realistic Android With a Human-Like Skeleton Just Went Viral With Its Freaky Moves

byRupendra Brahambhatt
6 months ago
NASA 3503281
Science

Researchers sent human muscle cells to space. They came back older

byMihai Andrei
1 year ago
Materials

The next innovative material for clothes? How about muscles

byMihai Andrei
4 years ago

Recent news

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

September 15, 2025

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

September 15, 2025

New Type of EV Battery Could Recharge Cars in 15 Minutes

September 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.