ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Health → Mind & Brain

Scientists discover how ketamine is so good against depression

The team believed that ketamine affected a small part of the brain, called the lateral habenula, also known as the “anti–reward center.”

Francesca SchiopcabyFrancesca Schiopca
February 20, 2018
in Diseases, Mind & Brain, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Ketamine, a drug generally used for anesthesia, but also for recreational purposes, is now in the spotlight for its promising results in fighting depression. As shown in previous research, ketamine improves depression’s symptoms in a few hours, unlike the rest of anti-depressants, which may take weeks, even months to work. Scientists have now discovered exactly how ketamine so rapidly soothes depression.

Via Wikipedia

 “People have tried really hard to figure out why it’s working so fast, because understanding this could perhaps lead us to the core mechanism of depression,” says Hailan Hu, a neuroscientist at Zhejiang University School of Medicine in Hangzhou, China, and a senior author of the study.

The team believed that ketamine affected a small part of the brain, called the lateral habenula, also known as the “anti–reward center.”

If you are wondering where is the habenula – follow the yellow area in the center of the brain.
Via Wikipedia

Neurons from the lateral habenula are activated by stimuli associated with unpleasant events, like the absence of the reward or punishment, especially when these are unpredictable. To better understand how they work, here is an example: If a rat or a mouse solves a maze, it will expect some form of reward. If the rodent doesn’t get any reward, even though it had successfully completed a task, the neurons from the lateral habenula will fire, thus inhibiting the activity of the reward areas. Researchers believe that these ‘reward-negative’ neurons in the brain are overreactive in depression.

To see if their hypothesis was right, researchers designed an experiment in which they directly infused the drug into the lateral habenula of rats with depression-like symptoms. Scientists discovered that the pattern of neuronal activity, not the overall activity of the lateral habenula was a key factor in triggering depression: a percentage of the neurons in the lateral habenula fire several times in quick bursts, rather than firing once at regular intervals.

These bursts of activity in rats with symptoms of depression are absent in healthy rodents. An analysis of brain slices of healthy rats showed that they only had about 7% of these bursting type of neurons, in comparison to the depressed rodents that had almost 23% bursting neurons.

Scientists found similar results when recording the brain activity of mice: The animals who suffered stressful events had more bursting cells in the lateral habenula. After using optogenetics — a technique that allows cells to be ‘turned on or off’ with the help of light — the mice became more depressed, refusing to swim in a container of water even if forced.

But after the mice and rats were given ketamine, the number of bursting neurons became similar to the one found in healthy animals. Even when the scientists directed the neurons to fire in bursts, animals that had been administered ketamine no longer exhibited symptoms of depression.

RelatedPosts

Link between cat bites and depression found
Wireless implants can block or induce the sensation of pain
Rap music lyrics referencing suicide and depression double since 1998
The Fat Around Your Thighs Might Be Affecting Your Mental Health

“Anything that can block the bursting … should be a potential target based on our model,” Hu says.

In an accompanying study published at the same time in the journal Nature, the team found a protein synthesized by astrocytes (another type of brain cell that interacts closely with neurons) could be one of these targets. This molecule controls the flow of ions between a cell and its environment and it is involved in the process of resetting the nerve cell after an electrical signal, which requires regathering all the ions that flowed out of the cell during the signal.

The protein identified by the research team changes the amount of potassium available to the nerve cell, altering the cell’s ability to fire again soon. By increasing the amount of this protein, researchers were able to induce depression-like symptoms in mice.

The paper published in the journal Nature truly casts light upon the exceptional anti-depressant mechanism of ketamine, also providing us with important insight into further understanding the pathology of depression.

Tags: depressionketaminemechanismmehanism of actionneurologyneuronsPsychiatric disorders

ShareTweetShare
Francesca Schiopca

Francesca Schiopca

Related Posts

News

Elon Musk’s Drug Use Was Worse Than Anyone Knew and It Didn’t Stop at Ketamine

byTibi Puiu
2 weeks ago
030911-F-6849F-027
Health

Veterans Show Lower Rates of Depression Than Civilians in Surprising Study

byJordan Strickler
2 weeks ago
Overweight Asian woman show and use hand to squeeze fat belly.
Health

The Fat Around Your Thighs Might Be Affecting Your Mental Health

byTudor Tarita
1 month ago
Health

Researchers Examine Novel Ketamine-Related Medication For Treating Life-Threatening Depression Symptoms

byReid Rusholme
3 months ago

Recent news

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.