ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Chemistry

Smart drug delivery via microcapsules could lead to safe cancer tumor treatment

Tibi PuiubyTibi Puiu
September 4, 2013
in Chemistry, Health
A A
Share on FacebookShare on TwitterSubmit to Reddit

Today, cancer is typically treated through highly invasive, painful and low efficiency treatments. Doctors resect the tumors, do radiation therapy, and then chemotherapy. This process is actually more stressful and painful to the patient than the cancer itself, but it does save lives sometimes. Scientists all over the world are hard at work developing alternative treatments, and a recent breakthrough by researchers at  Penn State  makes a significant contribution in this direction.

 Perfect microspheres were produced using 4 percent by weight of the polymer. (c) Mohammad Reza Abidian
Perfect microspheres were produced using 4 percent by weight of the polymer. (c) Mohammad Reza Abidian

Mohammad Reza Abidian, assistant professor of bioengineering, chemical engineering and materials science and engineering, along with colleagues designed tiny spherical microcapsules that are biodegredable and can be used for targeted treatment of cancer tumors.

Chemotherapy by intravenously inserting toxic drugs meant to kill the tumors. The big problem with chemo is that the procedure isn’t targeted, and the drugs need to be introduced through out the whole bloodstream affecting the whole body. Moreover, for the drugs to reach the tumor and work their magic, they need to  cross the blood brain barrier. This isn’t easily breached so high doses of the toxic drugs needs to be injected, resulting in even more collateral damage to the body.

“We are trying to develop a new method of drug delivery,” said Abidian. “Not intravenous delivery, but localized directly into the tumor site.”

Other methods have been tested to deliver  BCNU (bis-chloroethylnitrosourea) – the alkylating agent used in chemotherapy – directly into the brain. One such method involves  leaving wafers infused with the anti-tumor agent  in the brain after surgery, but when the drugs in these wafers run out you need to repeat surgery to get them out. Every surgery comes with hazards, besides adding a further complicated step in the treatment process (makes it more expensive), so this method hasn’t been to popular.

 This is a scanning electron micrograph of BCNU-loaded microspheres (black and white background) with 3D rendered images of brain cancers cells (yellow) and released BCNU (purple). (c) Mohammad Reza Abidian
This is a scanning electron micrograph of BCNU-loaded microspheres (black and white background) with 3D rendered images of brain cancers cells (yellow) and released BCNU (purple). (c) Mohammad Reza Abidian

Penn State researchers propose an alternate method of treatment. The BCNU agent has a half life in the body of 15 minutes, so insertion in the brain naturally implies that the compound needs to be protect somehow. Their solution is to wrap the BCNU inside biodegradable polymers of spherical shape, which can then be injected directly on the tumor site through the scalp. Now, the idea isn’t new – it’s been employed by other researchers before, however previous solutions involved microcapsules that weren’t uniform in size.

Hitting cancer right in the bull’s eye

It’s paramount for the drug to disperse in an uniform fashion, and this distribution is directly related to the shape. The more uniform the shape of the microcapsule, the better the drug distribution. The microcapsules designed by Abidian and fellows are almost perfectly spherical –  a height versus width ratio of 1.05. This means they can be used to  precisely control the time of drug release by altering polymer composition.

The microcapsules were made using a technique called electrojetting in which a solution (in our case, the  FDA-approved biodegradable polymer poly(lactic-co-glycolic) acid; the BCNU drug; and a solvent)  are rapidly ejected through a tiny nozzle with the system under a voltage as high as 20 kilovolts but with only microamperage.  Under the dissipated heat, the solvent in the solution quickly evaporates leaving behind the microcapsules that can take on the form of anything from a perfect sphere to a fiber, depending on the polymer concentration in the solution. A 3 to 4 percent  by weight solution of the polymer rendered the best results, however the researchers note that other shapes might interest manufactures for other applications.

RelatedPosts

New mesothelioma treatment involves tiny tubes of gold and lasers
Mini-“submarine” will be able to combat cancer within 3 years
A million French smokers quit in 2017 thanks to anti-smoking campaigns
Why Bats Don’t Get Cancer—And What That Could Mean for Us
 Microfibers were produced using 10 percent by weight solutions of the polymer. (c) Mohammad Reza Abidian
Microfibers were produced using 10 percent by weight solutions of the polymer. (c) Mohammad Reza Abidian

“Electrojetting is a low cost, versatile approach,” said Abidian. “We can produce drug-loaded micro/nano-spheres and fibers with same size, high drug-loading capacity and high drug-encapsulation efficiency.”

Promising smart drug delivery method

The drug delivery has yet to be tested in the lab, however the researchers made a mathematical simulation of the BCNU drug diffusion from the microcapsules. This helps in designing how much drug to include in each microcapsule and how long the microcapsules will deliver the required dosage. Trials on lab animals might begin shortly. Also important of note is that other drugs, besides BCNU, could be used for treating various afflictions.

ALSO READ: New method kills cancer with near-infrared light

Tags: BCNUcancerchemotherapydrug deliveryelectrojettingmicrocapsuletumor

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

AI Can Hear Cancer in the Voice Before Doctors Can Detect It

byMihai Andrei
4 days ago
Health

Sugar Compound from Deep-Sea Bacteria Causes Cancer Cells to Self-Destruct

byMihai Andrei
5 days ago
Health

A Popular Artificial Sweetener Could Be Making Cancer Treatments Less Effective

byTudor Tarita
2 weeks ago
Future

This Disturbing Phone Case Gets Sunburned Like Real Skin to Teach You a Lesson

byTibi Puiu
3 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.