Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health → Genetics

Chemical switch found in Alzheimer’s and stroke victims’ brains kills neurons

Henry Conrad by Henry Conrad
July 8, 2014
in Genetics, Mind & Brain, Neurology, News

Effects of Alzheimer's. Image: healthbenefitstimes.com
Effects of Alzheimer’s. Image: healthbenefitstimes.com

Researchers at the Sanford-Burnham Medical Research Institute (Sanford-Burnham) have found a chemical switch that both regulates the generation of new neurons from neural stem cells and the survival of existing nerve cells in the brain. Postmortem examination of the brains of Alzheimer’s patients and stroke victims found the switch that shuts off the signals was in abundance. With this in mind, it’s possible that a drug that targets the switch, called MEF2, might prevent neuronal loss in a variety of neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and autism.

“We have shown that when nitric oxide (NO)—a highly reactive free radical—reacts with MEF2, MEF2 can no longer bind to and activate the genes that drive neurogenesis and neuronal survival,” said Stuart Lipton, M.D., Ph.D., director and professor in the Neuroscience and Aging Research Center at Sanford-Burnham, and a practicing clinical neurologist. “What’s unique here is that a single alteration to MEF2 controls two distinct events—the generation of new neurons and the survival of existing neurons,” added Lipton, who is senior author of the study.

Switching new neurons on and off

Transcription factors are proteins that control which genes are turned on or off in the genome. They do so by binding to DNA and other proteins. Once bound to DNA, these proteins can promote or block the enzyme that controls the reading, or “transcription,” of genes, making genes more or less active. In the brain, the transcription factors are paramount to linking external stimuli to protein production, enabling neurons to adapt to changing environments. Previous research showed that the MEF2 family of transcription factors plays an important part in the neurogenesis and neuronal survival, as well as in the processes of learning and memory. On the opposite side, MEF2 mutations have been linked with neurodegenerative disorders, including Alzheimer’s and autism.

The NO-protein modification process mentioned by Lipton earlier was first described him and his collaborators some 20 years ago (S-nitrosylation). S-nitrosylation involves the covalent incorporation of a nitric oxide moiety into thiol groups, to form S-nitrosothiol (SNO). S-nitrosylation of MEF2 controlls neuronal survival in Parkinson’s disease and has important regulatory functions under normal physiological conditions throughout the body.

“Now we have shown that this same reaction is more ubiquitous, occurring in other neurological conditions such as stroke and Alzheimer’s disease. While the major gene targets of MEF2 may be different in various diseases and brain areas, the remarkable new finding here is that we may be able to treat each of these neurological disorders by preventing a common S-nitrosylation modification to MEF2.”

“The findings suggest that the development of a small therapeutic molecule—one that can cross the blood-brain barrier and block S-nitrosylation of MEF2 or in some other way increase MEF2 transcriptional activity—could promote new brain cell growth and protect existing cells in several neurodegenerative disorders,” added Lipton.

“We have already found several such molecules in our high-throughput screening and drug discovery efforts, so the potential for developing new drugs to attack this pathway is very exciting,” said Lipton.

The study was published in Cell Reports.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Buried soldiers may be the victims of ancient chemical warfare
  2. Researchers identify neurons that shut down rewards and motivation in the brains of mice
  3. Researchers make human neurons grow inside living rat brains
  4. Bioengineered gel heals the brains of stroke-injured mice, paves way for human treatment
  5. Honeybee brains could be a good model to study human brains on
Tags: Alzheimerautismgene

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW