Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Health

Researchers find a way to block alcohol addiction and ease withdrawal symptoms

Targetting a receptor in the brain could

Tibi Puiu by Tibi Puiu
June 27, 2018
in Health, Mind & Brain, News

whisky
Credit: Pixabay.

More than 15 million Americans abuse alcohol, trapped in a downward spiral where they need to ingest more alcohol in order to ease severe withdrawal symptoms. Many admit they simply can’t help themselves. But the latest findings by Scripps Research scientists could be a silver lining for numerous struggling alcoholics. Researchers found that activating a receptor in the brain of alcohol-addicted rats induced them to drink less and eased withdrawal symptoms.

The brain’s seat for alcohol

More than a decade ago, researchers who were combing through the human genome looking for genetic sequences that resemble known receptors came across a G-protein coupled receptor (GPCR) called GPR139. This class of receptors plays a key role in brain signaling, some of which have been previously linked to mental disorders, such as depression, schizophrenia, and drug-induced psychosis.

Subsequent research had shown that GPR139 is primarily found in the habenula, a brain region that mediates some forms of emotive decision-making by influencing the release of dopamine and serotonin. For instance, by inhibiting dopamine-releasing neurons, habenula activation leads to the suppression of motor behavior when an animal fails to obtain a reward or anticipates an aversive outcome. Moreover, the habenula is involved in behavioral responses to pain, stress, anxiety, sleep, and reward.

Olivier George, associate professor at Scripps Research and lead author of the new study, suspected that GPR139 might play a role in addiction, seeing how the habenula is activated during drug and alcohol withdrawal.

“We’ve been very interested in the habenula because this is the area of the brain that produces withdrawal symptoms, which an animal or human then tries to avoid by taking another drink or another dose of a drug,” said George in a statement.

Olivier George, PhD, associate professor at Scripps Research. Credit: Scripps Research.
Olivier George, PhD, associate professor at Scripps Research. Credit: Scripps Research.

In an experiment, George and colleagues gave 12 non-alcohol-dependent rats and 17 alcohol-dependent rats an experimental compound called NJ-63533054, which activates GPR139. The drug had no effect on the alcohol intake of the non-alcohol-dependent rats. However, it significantly decreased the amount of alcohol ingested by the rats addicted to alcohol. 

The JNJ-63533054 compound was particularly effective for one-subgroup of rats: those that had the highest alcohol intake and showed compulsive drinking behavior. These rats had such a severe drinking problem that they would continue to ingest alcohol even when it was adulterated with a bitter taste, which should have normally been repulsive for them. This behavior suggests that the targeted receptor is activated when the rats are drinking a lot and going through withdrawal.

[RELATED] The science of hangovers

During alcohol withdrawal, the pain threshold in rats (and humans) is generally lower. In order to confirm their findings, the researchers tracked the pain threshold of 17 rats undergoing alcohol withdrawal. When the rodents were treated with JNJ-63533054, they later had a higher threshold for pain. Yet again, the effects were strongest in the rats with the most compulsive drinking behavior.

Finally, in another experiment, the researchers delivered JNJ-63533054 directly to small areas of the brain through thin tubes. Rats ingested less alcohol when the drug was sent to the habenula, but not other brain areas. This confirmed the habenula’s role in alcohol addiction.

The experiments were performed exclusively on male rats, but the researchers suspect that the findings should carry over female rats, too. What’s more, the habenula is involved in broader types of addiction, meaning JNJ-63533054 might ease other types of addiction, besides alcohol.

“The good thing about this type of target is that is almost exclusively expressed in the brain, which limits side effects, and it seems to have no effect on individuals who are not dependent,” says George. “Those are both positive indications of the receptor being druggable.”

The findings appeared in the journal eNeuro.

Was this helpful?


Thanks for your feedback!

Related posts:
  1. Blood pressure drug also improves alcohol withdrawal symptoms
  2. Exercising improves nicotine withdrawal symptoms, helps to quit smoking
  3. One in ten heavy cannabis users who quit experience withdrawal symptoms
  4. What is nicotine withdrawal: symptoms, coping, and treatment
  5. A healthier diet could help ease depression symptoms
Tags: addictionalcohol

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW