ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Features → Technology → Sustainability → Renewable Energy

How exactly do solar panels work?

Solar energy is on the rise, but how does it really work?

Tibi PuiubyTibi Puiu
January 23, 2018 - Updated on May 4, 2023
in Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit
Credit: Pixabay.
Image in public domain

If you told the average person only thirty years ago that black panels left in the sun would generate copious amounts of electricity for homes and businesses, the likeliest reaction would have been a condescending grin. Luckily the technology to capture energy from the sun — which shines enough light on Earth’s surface in an hour to power the whole world’s energy for an entire year — has improved immensely, to the point that for many homeowners it’s cheaper to install solar panels on their rooftop than to use the grid.

The first solar cell was constructed by Charles Fritts in the 1880s and had a conversion efficiency of just 1% — hardly enough to be useful. Today, however, the most efficient commercially available solar panels on the market have efficiency ratings as high as 22.5%, while the majority of panels range from 12% to 16% efficiency rating. However, solar efficiency can climb to rated efficiencies as high as 46%, in the case of multi-junction photovoltaic (PV) cells that pick up energy from multiple different spectra.

If all this sounds somewhat familiar, it’s because plants have been harnessing energy from the sun for hundreds of millions of years — there’s nothing new about how solar energy works, we are just using it in a different way. Plants convert the sun’s energy into chemical energy, whereas solar cells produce electricity. This leads us to an important question: how do solar panels work?

Solar panels ABC

Solar panels generate electricity when photons knock electrons off from the material. In fact, a solar panel is comprised of an array of smaller units called photovoltaic cells, which are the things that actually convert solar energy into electricity. The typical solar panel is additionally comprised of a metal frame, a glass casing, and various wiring to allow current to flow from the silicon cells. Because solar panels generate direct current, an inverter is also required to allow you to use the electricity in your home.

[button url=”https://lp.understandsolar.com/ro/core/?lead_source=zmescience&tracking_code=how_solarpanels_work” postid=”” style=”btn-success” size=”btn-lg” target=”_blank” fullwidth=”true”]Find out how much a solar roof can save you in your area[/button]

Physics-wise, solar power is predicated on the photovoltaic effect (photo meaning “light” and voltaic meaning “electricity”), in which two dissimilar materials in close contact produce an electrical voltage when struck by light or other radiant energy. In solar energy, the materials belong to a class called semiconductors — neither conductors nor electrical insulators that allow electrons to flow under certain conditions. The most common semiconductor used in the solar industry is silicon.

RelatedPosts

Tired of boring blue rooftops? Scientists make colorful solar panels with minimal loss in efficiency
2013 World Solar Challenge may feature the street cars of tomorrow
Wide-scale use of solar technology in cities would almost cover their full energy needs
Nanowires break solar cell cell theoretical maximum efficiency and usher in a new era of solar power

Semiconductors can be one of two types: P and N. Every solar cell sandwiches two of these semiconductors, one layer of P-type and one layer of N-type (which looks a lot like a battery).

P-type semiconductors tend to pick up a small positive charge while N-type ones have a negative charge. Typically, the semiconducting material is riddled with impurities that make them more susceptible to donating or accepting electrons because crystals such as silicon or germanium do not usually allow electrons to move freely from atom to atom. It’s all very similar to how one of the battery’s electrodes has a negative voltage with respect to the other, but applied in a different context.

It’s the P-N junction where electrons are free to cross from one side to the other, but not in the opposite direction. Imagine a hill — electrons can easily go down the hill (to the N side), but can’t climb it (to the P side).

Each photon with enough energy will normally free exactly one electron, causing a ‘hole’ to form. The electric field will then cause the electron to migrate to the N side and the hole to the P side.

This happens when an electron is lifted up to an excited state by consuming energy received from the incoming light. Were it not for a junction-forming material, the free electrons would have eventually fallen back to the ground state.  And because the electrons are only allowed to flow in a single direction — from N-type to P-type — the photovoltaic effect produces a direct current.  This current, together with the cell’s voltage, defines the power (or wattage) that the solar cell can produce.

[button url=”https://lp.understandsolar.com/ro/core/?lead_source=zmescience&tracking_code=how_solarpanels_work” postid=”” style=”btn-success” size=”btn-lg” target=”_blank” fullwidth=”true”]Find out how much a solar roof can save you in your area[/button]

The future

According to the International Energy Association (IEA), photovoltaic solar power grew faster than any other energy source in 2016. The organization estimates that more solar capacity will be added in the next four years than any other type of renewable energy, including wind and hydropower.

70,000 #solar panels will be installed every hour 🕒 around the world over the next 5 years. Read more 👉 https://t.co/NyWkULNQiG pic.twitter.com/IAH1brMHYi

— International Energy Agency (@IEA) January 4, 2018

Much of this demand comes from China, which is expected to add 40% of the world’s new solar panels between now and 2022, despite having already surpassed its solar power target for 2020. Along with developments in other countries, such as India, Japan, and the US, the IEA estimates that by 2022 the world will triple its PV cumulative capacity to 880 GW. This is equivalent to half the global capacity in coal power, which has taken 80 years to build. This also means that in the next five years, about 70,000 new solar panels will be installed every hour – enough to cover 1,000 soccer pitches every day.

Tags: solar energysolar panelsolar power

Share90TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Agriculture

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

byTudor Tarita
2 months ago
A satellite with solar panels orbiting the Earth.
Future

Japan Plans to Beam Solar Power from Space to Earth

byRupendra Brahambhatt
2 months ago
News

For the first time ever, wind and solar produced more electricity than coal in the US

byTudor Tarita
3 months ago
News

Reaching Net Zero Emissions Might Be Much Easier (and Cheaper) Than We Thought

byMihai Andrei
4 months ago

Recent news

Meet the Dragon Prince: The Closest Known Ancestor to T-Rex

June 13, 2025

Your Breathing Is Unique and Can Be Used to ID You Like a Fingerprint

June 13, 2025

In the UK, robotic surgery will become the default for small surgeries

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.