ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Animals

These African ticks survived for 8 years without food. Females laid eggs years after the last male had died

These creatures just won't stop ticking.

Tibi PuiubyTibi Puiu
February 23, 2022
in Animals, Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit
Argas brumpti. Credit: Jonathan Cohen.

The toughest animals on Earth are often not what you expect. A prime example is the eight-legged tardigrades capable of surviving extreme heat, cold, and even the vacuum of space. But there’s another tough guy you should know about, especially since they often like to take on humans. Meet the East African tick, a blood-sucking arachnid that can go without food for at least 8 years, and with a lifespan of over 27 years. What’s more, females have been able to lay eggs even 4 years after the last male in their group had died.

The remarkable longevity and resilience of the East African (Argas brumpti) tick were just recently revealed by a rare study almost 60 years in the making, which could be a separate story in itself, illustrating the virtues of patience in science.

It all started in 1976, when Julian Shepherd, an associate professor of biological sciences at Binghamton University in New York, was given six adult females, four adult males, and three nymphs of A. brumpti collected from caves near Nairobi, Kenya. He decided to monitor them in his lab in a habitat with stable conditions, where they were fed periodically on mice, rabbits, or drawn rat blood.

For years, the captive ticks enjoyed their regular feast until one day Shepard simply stopped giving them blood when his lab ran out of rabbits and mice to feed on. Little did the biologist realize at the time that, even starving, his original group of ticks would survive until the next century.

East African ticks have soft and leathery skins, unlike the hard shell sported by the common types of ticks that you’ll find in the parks and countryside. And unlike your run-of-the-mill tick, Argas brumpti is not reported to carry any diseases, although its bites can cause substantial, painful lesions with aftereffects sometimes persisting for many months and even years, something that Shepard knows from first-hand experience.

In their natural habitat, the ticks reside in shallow caves, rocky areas, or dust-bath areas used by their favorite prey, such as small to large mammals and lizards, notably in the dust around termite mounds that large mammals rub against. This perennially dry environment with few opportunities to encounter hosts may explain A. brumpti‘s extreme longevity, even within a taxon renowned for sustained survival even without food or water.

“I am always enthralled by the adaptations of organisms to their environment—in this case, a dry environment with virtually no access to water for long periods of time and a lifestyle that must wait for very long intervals of no food between encounters with host animals,” Shepherd said in a statement.

RelatedPosts

Losing Just 12 Pounds in Your 40s Could Add Years to Your Life
Discovering new anti-aging secrets from the world’s longest-living vertebrate
Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It
Women may live longer than men due to stronger immune system

Adaptations to its environment may explain another incredible feat. Four years after the last original tick died, the females continue to live for another four years. These hungry females were eventually fed, and much to Shepherd’s surprise, at least one of the females laid a batch of eggs. This second generation of offspring is still alive and apparently healthy to this day, being 26 years old and counting. The oldest tick from the original batch died after 27 years, during which they were deprived of food for eight years.

One explanation is that the female ticks are capable of parthenogenesis, also known as “virgin births” because embryos can grow and develop without fertilization by sperm. But Shepherd thinks this is extremely unlikely. Instead, the females are probably capable of long-term sperm storage until they have ample food, at which point the sperm moves up the reproductive tract and fertilizes eggs.

In any case, both this longevity and long-term storage are records for any species of tick — and these insights could prove useful beyond the remarkable nature of conducting a 60-year experiment. That’s something for other researchers to learn though, as the ticks have been shipped to South Africa for further study, while Shepherd is now moving onto new research on moths and the physiology of their sperm.

“Research on how organisms master such challenges can inform understanding of how other organisms, including us, might manage similar challenges,” Shepherd said.

The findings appeared in the Journal of Medical Entomology.

Tags: longevitytick

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Health

Tennis May Add Nearly 10 Years to Your Life and Most People Are Ignoring It

byTibi Puiu
1 month ago
Science

Coffee Could Help You Live Longer — But Only If You Have it Black

byMihai Andrei
2 months ago
Health

Losing Just 12 Pounds in Your 40s Could Add Years to Your Life

byTudor Tarita
3 months ago
Health

Mice Lived 30% Longer (And Better) on This Drug Combo and Scientists Are Eyeing Human Trials Next

byTibi Puiu
3 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.