ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Physics

New theory suggests quantum entanglement and wormholes are linked together

Tibi PuiubyTibi Puiu
December 3, 2013 - Updated on February 16, 2017
in Physics, Research
A A
Share on FacebookShare on TwitterSubmit to Reddit

quantum_entanglement_wormholes

One of the predictions derived from Einsten’s theory of general relativity is the existence of wormholes – spacetime shortcuts. In theory such bridges may offer instantaneous travel between the two bridgeheads or wormholes even if these are light-years away from each other. Two independent studies suggest that there’s a link between quantum entanglement and wormholes, or to be more precise: each wormhole has a corresponding pair just like two entangled quantum particles.

Quantum entanglement is nothing short of bizarre. In a pair of entangled particles,  a change in the quantum characteristics of one of the particles can’t happen without also causing a change in the other particle, even if these particles are millions of miles away. This concomitant change happens instantaneously, which is  why some people liken it to teleportation. I know, it’s a really strange and  non-intuitive aspect of the quantum theory of matter – this is why Einstein called it “spooky action at a distance.” For what’s it worth, although quantum entanglement was first theorized a long time ago, only recently did researchers prove that it’s real.

Practical applications for quantum entanglement have already been proposed, as entangled particles have been suggest for use in  powerful quantum computers and “impossible” to crack networks. Now, it seems quantum entanglement may be linked to wormholes.

Entangled wormholes

Theoretical physicists Juan Martín Maldacena at the Institute for Advanced Study in Princeton and Leonard Susskind at Stanford University argue that wormholes are nothing but pairs of black holes entangled together. A proposed mechanism of wormhole generation would be that when a black is born, its pair is simultaneously created as well. Moreover, they conjectured that entangled particles such as electrons and photons were connected by extraordinarily tiny wormholes.

[READ] Quantum theory suggests black holes are wormholes

Kristan Jensen, a theoretical physicist at Stony Brook University in New York and his colleague theoretical physicist Andreas Karch at the University of Washington in Seattle sought to investigate entangled particles behave in supersymmety theory which suggests that all subatomic particles have a corresponding partner or pair.

RelatedPosts

Long standing physics mystery apparently solved: light behaves both as particle and wave
Time Travel Without the Paradoxes
Physicists are a step closer to a theory of quantum gravity
From atoms to life size: manufacturing from nanoscale up to macro

One of the biggest challenges physicists seek to address is developing a unified theory of physics, one that reconciles both general relativity and quantum mechanics. Supersymmetry is one such proposition that aims to unite the two grand theories of physics that explain the large universe (general relativity) and the tiny universe (quantum mechanics).

One huge idea expressed in this theory relates to holography or the notion that actions in this universe  may emerge from a reality with multiple dimensions; like a 2-d hologram may give the impression of 3-d object. I’d highly recommend you watch this video of Carl Sagan discussing the tesserat. Anyway, if you imagine a physical system that exists in only 3 dimensions, in theory you can describe that system using objects behaving in the four dimensions that general relativity describes the universe as having  (width, length, depth and time).

Jensen and Karch found that if one imagined entangled pairs in a universe with four dimensions, they behaved in the same way as wormholes in a universe with an extra fifth dimension.  A wormhole that curves space and time until two points coincide and entanglement may be one of the same thing then.

“Entangled pairs were the holographic images of a system with a wormhole,” Jensen said. Independent research from theoretical physicist Julian Sonner at the Massachusetts Institute of Technology supports this finding.

“There are certain things that get a scientist’s heart beating faster, and I think this is one of them,” Jensen told LiveScience. “One really exciting thing is that maybe, inspired by these results, we can better understand the relation between entanglement and space-time.”

Tags: blackholequantum entanglementquantum mechanicswormhole

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

This Bold New Theory Could Finally Unite Gravity and Quantum Physics

byTibi Puiu
3 months ago
Science

Researchers create a new type of “time crystal” inside a diamond

byMihai Andrei
5 months ago
News

Physicist Claims Gravity Might Emerge From Entropy. Could This Unite Quantum Mechanics and Gravity?

byTibi Puiu
5 months ago
News

Physicists Say Time’s Arrow Could Move in Two Directions at Once

byTibi Puiu
6 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.