ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Renewable Energy

Record-breaking silicon solar cell efficiency of 26.6% demonstrated by Japanese researchers, very close to the theoretical limit

We're getting closer to the ideal silicon solar cell.

Tibi PuiubyTibi Puiu
March 24, 2017
in News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit

Improving the efficiency of silicon-based solar cells has proven a challenge in the past couple of years as all the low-hanging fruits had been picked dry. That didn’t stop a team of Japanese researchers from Kaneka Corporation to push the envelope. They report a record-breaking efficiency of 26.3% beating the previous record of 25.6%. Most commercial-grade solar cells operate in the low-20-percent range. There are millions of solar panels in the world and by 2050 there could be billions. Even a fraction of a percent can add up to massive amounts of renewable electricity which is why such work is extremely important.

Silicon solar cell with 26.3% efficiency. Credit: Kaneka Corporation.
Silicon solar cell with 26.3% efficiency. Credit: Kaneka Corporation.

Close to an ideal solar cell

The theoretical limit for silicon solar cells is 29 to 30 percent silicon cells primarily capture the light waves from the red spectrum of sunlight while the rest of the spectrum is not utilized. The most efficient solar cells demonstrated thus far report efficiencies of 34.5% for unconcentrated sunlight and 46% in the case of multi-junction concentrator solar cells. These solar cells, however, aren’t based on silicon but exotic and sometimes toxic materials like indium-gallium-phosphide, indium-gallium-arsenide or germanium. Moreover, these cells can be very expensive which is why most utility scale as well as rooftop solar is made of silicon — an abundant material that has been used by the semiconductor industry for decades and can be cheaply sourced. It’s partly thanks to silicon that solar panels have become increasingly economically feasible. So much so that solar energy is now cheaper than fossil fuels in many parts of the globe, even without subsidies. 

At the same time, upping silicon efficiency can be challenging nowadays. The most recent record-breaking cell is a thin-film heterojunction (HJ) design where multiple bands of silicon are layered within the cell to minimize band gaps. To make the cells, a manufacturing process called plasma-enhanced chemical vapor deposition (PECVD) was used where thin films of silicon are deposited on a wafer from a gas state. It’s the same technique that Panasonic uses to manufacture panels for Tesla at the Solar City plant in Buffalo, says Megan Geuss from Ars Technica.

The team from Kaneka also placed low-resistance electrodes at the rear of the cells which maximize the number of captured photons collected by the cell from the front. Additionally, the top layer of the cell is coated with a layer of amorphous silicon as well as an anti-reflective layer that not only reduces maintenance but also helps collect more photons.

Tests which have been recognized by the National Renewable Energy Lab (NREL) suggest the Kaneka cell are 26.3 percent efficient. After publishing their paper in Nature Energy, Kaneka claims it managed to reach 26.6 percent efficiency.

Kaneka also quantified the energy losses that kept the cell from reaching its full 29 percent efficiency. The researchers conclude overall efficiency was reduced by 0.5% due to resistive losses, 1% from optical losses, and 1.2% to recombination losses. Nevertheless, we’re talking about a 2.7 percent increase in efficiency which can add up considerably.

 

RelatedPosts

Large corporations are buying 75% more clean energy than last year
Why transparent solar cells could replace windows in the near future
Floating solar panels could provide the world with the extra electricity it needs
Solar employs nearly twice as many people in U.S. electricity generation than oil, gas, and coal combined
Tags: solar cellsolar energy

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Agriculture

America’s Cornfields Could Power the Future—With Solar Panels, Not Ethanol

byTudor Tarita
2 months ago
Environment

Golf Courses Use More Land Globally Than Solar or Wind Energy

byMihai Andrei
4 months ago
Science

China wants to build massive solar station in space — it’s like a ‘Three Gorges dam’ in orbit

byMihai Andrei
6 months ago
Climate

Solar power outshines reforestation for climate change mitigation

byMihai Andrei
2 years ago

Recent news

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025

The world’s oldest boomerang is even older than we thought, but it’s not Australian

June 27, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.