ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Environment → Green Living

First man-made biological leaf might actually be useless

If the leaf really works as the hype would have us believe, then it's really a fantastic display of ingenuity.

Tibi PuiubyTibi Puiu
January 12, 2015 - Updated on August 2, 2017
in Green Living, News, Renewable Energy
A A
Share on FacebookShare on TwitterSubmit to Reddit
silk_leaf
Credit: Julian Melchiorri

This past week, social media channels have been flooded with the story of the first functioning artificial leaf – a material that encases chloroplasts into silk proteins to generate oxygen from water and light. Websites like CNET and Gizmodo rushed to hail the invention as a viable means to generate oxygen inside spaceships or off-Earth colonies on Mars or the moon. If the leaf really works as the hype would have us believe, then it’s really a fantastic display of ingenuity. However, there’s no scientific paper, no data from tests that might tell us how efficient the leaf is at photosynthesis (if such tests even exist) and no solid scientific grounds that would suggest the leaf would actually work as intended. For the moment, it seems like this artificial leaf in question is more conceptual than it is practical.

Does it really work?

Its creator is Julian Melchiorri, a student at the Royal College of Art. He claims he has created the first man-made, biologically functional leaf that takes in carbon dioxide, water, and light and releases oxygen. Basically, the leaf consists of chloroplasts – organelles found in plant cells and eukaryotic algae that conduct photosynthesis – suspended in a body made of silk protein.

silk_leaf1
Credit: Julian Melchiorri

“This material has an amazing property of stabilizing (the chloroplast) organelles,” Melchiorri says in a presentation video. “As an outcome I have the first photosynthetic material that is living and breathing as a leaf does.”

The leaf could be used in space exploration as an oxygen generator. Its advantage over regular plants would be that it doesn’t require soil or special nutrients and isn’t confined to any problems that plant growth might face in zero gravity. Here on Earth, the leaf could be used for both indoor and outdoor environments, literally providing a breath of fresh air.

The "Silk Leaf" uses light given off by your bulbs to fuel fresh oxygen generation in your living room. Image: Julian Melchiorri
The “Silk Leaf” uses light given off by your bulbs to fuel fresh oxygen generation in your living room. Image: Julian Melchiorri

It all sounds very exciting, but is it all just for show? Wrapping chloroplasts into silk proteins is a great idea, yet while the design may provide photosynthesis, it’s highly unlikely this can be sustained. Chloroplasts are membrane wrapped-organelles. As such, they depend on various cellular pathways that cycle membrane and proteins to keep healthy. So, once you put them out of their environment, they’ll stop working soon. Dr. Wim Vermaas of Arizona State University’s Center for Bioenergy and Photosynthesis puts it better than I ever will:

‘[…] while it may possibly be true that silk proteins stabilize chloroplast function somehow, proteins in a cell are in a constant state of turnover (some more than others) and eventually (on the scale of hours or perhaps days), the system will inactivate. In isolated chloropolasts spread out on silk, no new nuclear-encoded proteins can be accessed. And as most of the proteins in the chloroplast need to be important, the life of an isolated chloroplast is necessarily short-lived. So, it won’t be surviving long enough to be useful for a space mission, I’m afraid,’ said Dr. Vermaas speaking for Materia.

For now, the best means of generating oxygen in space remains electrolysis, a process which uses electricity to split water into hydrogen and oxygen. The electricity is sourced from solar panels strapped on the spaceship or space station. Melchiorri’s leaf has the added advantage of working without any external energy input. If it works in the first place. Again, we’ve only been offered a superficial view of its inner workings. Personally, I hope it will eventually work, but I’m not betting on it.

 

RelatedPosts

Laying a roadmap for future artificial leafs
Artificial leaf and bacteria turn sunlight into liquid fuel
‘Artificial leafs’ turn water and sunlight into electricity
Artificial leaf breakthrough makes solar fuels one step closer
Tags: artificial leafRoyal College of Artsilk leaf

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

artificial-leaf-cc543
Nanotechnology

Artificial leaf breakthrough makes solar fuels one step closer

byTibi Puiu
10 years ago
The prototype for the first practical "artificial leaf," which has been hyped in the media since its flashy debut at the American Chemical Society national meeting last year. Image: MIT
Chemistry

Artificial leaf and bacteria turn sunlight into liquid fuel

byTibi Puiu
10 years ago
Physics

Laying a roadmap for future artificial leafs

byMihai Andrei
12 years ago
Artificial Leaf
Chemistry

Artificial leaf closer to reality after two new studies

byTibi Puiu
14 years ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.