ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Remote sensing

Hawaii astronomer takes picture of youngest planet

Mihai AndreibyMihai Andrei
October 20, 2011
in Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Meteorites Not Responsible For Building Solar System, Study Finds
‘Baby’ planet two to three times the size of Jupiter discovered
When Worlds Collide
Astronomers scout metal-rich asteroid thought to be worth 10,000 quadrillion dollars

An astronomer working at the University of Hawaii captured the first ever pictures of a planet forming around a star.

In order to do it, he used the 10-metre Keck telescopes on Mauna Kea and a system of mirrors; the main problem with taking pictures such as these ones is that the planet’s star usually outshines the planet, so there is a need to obstruct the starlight.

The protoplanet, or planetary embryo, was named LkCa 15 b; the hot mass of dust and gas will become a giant, much like Jupiter and Saturn. It is currently the youngest planet ever found.

‘LkCa 15 b is the youngest planet ever found, about 5 times younger than the previous record holder,’ said Adam Kraus, who made the discovery. ‘This young gas giant is being built out of the dust and gas. In the past, you couldn’t measure this kind of phenomenon because it’s happening so close to the star. But, for the first time, we’ve been able to directly measure the planet itself as well as the dusty matter around it.’

Upon analyzing images at different wavelengths, researchers were surprised by the complexity of the phenomenon.

‘We realized we had uncovered a super Jupiter-sized gas planet, but that we could also measure the dust and gas surrounding it. We’d found a planet at its very beginning,’ said Kraus.

Tags: hawaii astronomerLkCa 15 bprotoplanetyoungest planet

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Astronomers scout metal-rich asteroid thought to be worth 10,000 quadrillion dollars

byTibi Puiu
5 years ago
Birthplace of giant planets: Monash astrophysicists discover a baby planet sculpting a disc of gas and dust. Credit: ESO/ALMA.
Astronomy

‘Baby’ planet two to three times the size of Jupiter discovered

byRob Lea
6 years ago
Astronomy

How to “Weigh” Baby Planets

byJohn Tuttle
7 years ago
An artist's rendering of a protoplanetary impact. Early in the impact, molten jetted material is ejected at a high velocity and breaks up to form chondrules, the millimeter-scale, formerly molten droplets found in most meteorites. These droplets cool and solidify over hours to days.
Credit: NASA/California Institute of Technology
Astrophysics

Meteorites Not Responsible For Building Solar System, Study Finds

byMihai Andrei
11 years ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.