ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Webb telescope finds carbon-based molecules in the atmosphere of a water planet. Could this be a sign of life?

This raises prospects about potentially habitable worlds elsewhere in the universe

Fermin KoopbyFermin Koop
September 15, 2023
in Astronomy, News, Space
A A
Edited and reviewed by Mihai Andrei
Share on FacebookShare on TwitterSubmit to Reddit

Scientists at NASA have found evidence of methane and carbon dioxide (CO2) in the atmosphere of K2-18 b, an exoplanet 8.6 times bigger than earth as Earth. The discovery offers a glimpse into a planet unlike anything in our Solar System and adds to recent studies that suggested K2-18 b could be an ocean planet with a hydrogen-rich atmosphere. There’s also a tantalizing molecule in the planet’s atmosphere.

planet
An artist’s concept shows what exoplanet K2-18 b could look like. Image credits: NASA, CSA, ESA, J. Olmsted (STScI), Science: N. Madhusudhan (Cambridge University)

The new data about the atmospheric properties of this exoplanet came from observations made with NASA’s James Webb Space Telescope (JWST). This new study builds on previous studies in 2020 and 2021 using Webb’s predecessors Hubble and Kepler. K2-18 b orbits the dwarf star K2-18 and lies light-years from Earth in the constellation Leo.

Researchers had previously suggested K2-18 belonged to a new class of exoplanets called “Hycean” worlds. The name comes from a combination of “hydrogen” and “ocean” as these worlds are covered in a hydrogen atmosphere and could support oceans. Water worlds are very interesting for astrobiologists because, without water, there can be no life. However, research on the habitability of Hycean worlds isn’t very detailed.

Using JWST’s instruments, this new study has identified methane and carbon dioxide in a hydrogen-rich atmosphere on K2-18 b. This supports the hypothesis that there may be a water ocean on the planet. The observations also provided the possible detection of a molecule called dimethyl sulfide (DMS). On Earth, DMS is only produced by living organisms.

“Our findings underscore the importance of considering diverse habitable environments in the search for life elsewhere,” Nikku Madhusudhan, an astronomer at the University of Cambridge and lead author of the paper announcing these results, said in a news release.

The mysteries of K2-18 b

K2-18 b lies in what NASA calls the habitable zone, a region around a star where planets with liquid water could be present. Its interior likely has a large mantle of high-pressure ice, similar to Neptune, but with a thinner hydrogen-rich atmosphere and an ocean-atmosphere. However, the ocean might be too hot to be habitable or liquid.

Image credits: NASA, CSA, ESA, J. Olmstead (STScI), N. Madhusudhan.

Describing the atmospheres of exoplanets such as K2-18 b involves discerning their gas composition and physical attributes. This is a very dynamic and challenging field in astronomy, particularly as these exoplanets are outshone by the glare of their bigger parent starts.

In order to overcome this, the researchers analyze can light from K2-18 b’s parent star as it passed through the exoplanet’s atmosphere. Imagine this: when the planet passes in front of its star, it blocks some of the star’s light. But another part of the star’s light passes right above the planet, through its atmosphere. This passage leaves traces that astronomers can review to better understand the exoplanet’s atmosphere.

RelatedPosts

NASA cancels all-female spacewalk — cites lack of spacesuit in the right size
A novel way of measuring the size of the Universe
Earth on the night shift: a incredible view from space [VIDEOS]
TD54 Asteroid Collision Causes Atom Bomb-like Effects

“This result was only possible because of the extended wavelength range and unprecedented sensitivity of Webb, which enabled robust detection of spectral features with just two transits,” said Madhusudhan. “For comparison, one transit observation with Webb provided comparable precision to eight observations with Hubble.”

Next, the team intends to do follow-up research that they hope will further validate their findings and provide new insight into the environmental conditions on K2-18 b. They will use Webb’s Mid-InfraRed Instrument (MIRI) spectrograph to look for chemical signatures called biomarkers, including dimethyl sulfide (DMS), which could indicate the presence of biological activity.

Researchers are particularly excited about the potential of this molecule because on Earth, DMS is only produced by life.

If the same were to be reported on this planet, it would be perhaps the biggest sign of life outside our solar system.

The paper has been published in The Astrophysical Journal Letters.

Tags: nasawater planet

ShareTweetShare
Fermin Koop

Fermin Koop

Fermin Koop is a reporter from Buenos Aires, Argentina. He holds an MSc from Reading University (UK) on Environment and Development and is specialized in environment and climate change news.

Related Posts

Future

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

byTibi Puiu
2 months ago
News

NASA’s Curiosity Rover Spotted Driving Across Mars From Space for the First Time

byTibi Puiu
2 months ago
Climate

Trump’s Budget Plan Is Eviscerating NASA and NOAA Science

byMihai Andrei
2 months ago
News

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

byTibi Puiu
3 months ago

Recent news

Science Just Debunked the ‘Guns Don’t Kill People’ Argument Again. This Time, It’s Kids

June 13, 2025

It Looks Like a Ruby But This Is Actually the Rarest Kind of Diamond on Earth

June 12, 2025

ChatGPT Got Destroyed in Chess by a 1970s Atari Console. But Should You Be Surprised?

June 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.