ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Synthetic biology might enable future manned missions to Mars

Tibi PuiubyTibi Puiu
November 10, 2014
in Biology, News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

In all likelihood, we won’t be seeing a manned mission for Mars before 2030, but until this happens forefront research is pushing the limits so we can finally get there. This includes synthetic biology, which promises to play a key role in reducing payload – a major concern in every space application, manned or not – and provide food and logistic needs for astronauts landing on the Red planet. A new study published in the Journal of the Royal Society Interface reports just a few of the possible outcomes of using synthetic biology, complete with a technical-economical study. The findings suggests that synthetic biology will become an integral component of any planned manned mission to Mars.

Synthetic biology helps us reach a dead planet

Microbial-based biomanufacturing could be transformative once explorers arrive at an extraterrestrial site. (Image courtesy of Royal Academy Interface)
Microbial-based biomanufacturing could be transformative once explorers arrive at an extraterrestrial site. (Image courtesy of Royal Academy Interface)

“Not only does synthetic biology promise to make the travel to extraterrestrial locations more practical and bearable, it could also be transformative once explorers arrive at their destination,” says Adam Arkin, director of Berkeley Lab’s Physical Biosciences Div. (PBD) and a leading authority on synthetic and systems biology.

“During flight, the ability to augment fuel and other energy needs, to provide small amounts of needed materials, plus renewable, nutritional and taste-engineered food, and drugs-on-demand can save costs and increase astronaut health and welfare,” Arkin says. “At an extraterrestrial base, synthetic biology could make even more effective use of the catalytic activities of diverse organisms.”

Synthetic biology is an  exciting field is evolving so rapidly that no widely accepted definitions exist. Common to many explanations is the idea of synthetic biology as the application of engineering principles to the fundamental components of biology. Most obvious, synthetic biology involves genetic engineering where scientists directly interfere with an organism’s genetic makeup and manipulate it for certain outcomes like increased plant yield, producing of a new protein and so on. But it’s not only about manipulating existing DNA; synthetic biologists are most excited about designing DNA from scratch to design organisms that do new things–like produce biofuels or excrete the precursors of medical drugs.

[DON’T LAUGH] Manned mission to Mars will use poop as radiation shielding 

Researchers at the Lawrence Berkeley National Laboratory, US sought to analyze how synthetic biology might be used  to harness available volatiles and waste resources on manned long-duration space missions. The team looked at a typical manned mission lasting  916 days (210 days for travel to there and back again and the other 496 days to stay on the Red Planet) made-up of six crew members. Six people might not sound like much, but considering the mission’s length and the distance they need to travel (~140 million km for there and back at Mars’ closest distance; check this fantastic website for a visual representation), this means a lot of fuel, food, medicine, martian habitat and life support systems need to be integrated. In turn, this implies a massive payload that needs to be delivered.

How a Mars colony might look like. Photo: NASA
How a Mars colony might look like. Photo: NASA

To make an idea, one of NASA’s rules of thumb is that for every pound of payload, you need 99 pounds to “support”, ranging from fuel, to oxygen, and all of the above listed products. Today, it costs $10,000 to put a pound of payload into Earth’s orbit, yet for Mars this would cost even more. The point is that for a Mars mission to be feasible, scientists need to find new ways of miniaturizing technology, reuse materials and, most importantly, harvest compounds from external sources (i.e. Martian soil).

[RELATED] Manned mission to Mars might destroy Martian life

The science of weight control

 

RelatedPosts

Mysterious martian gouges carved by hovering dry ice
Russia struggles to fix Grunt Phobos mission
Salt lake Mars: Red planet had salty lakes billions of years ago
First tomatoes and peas harvested from Mars-like soil

This is where synthetic biology comes in. The authors looked at four key areas where synthethic biology might render improvements, using common space metrics like mass, volume and power to  describe them. The areas are: fuel generation, food production, biopolymer synthesis, and pharmaceutical manufacture. Here are the key findings:

  • microbial biomanufacturing capabilities could reduce the mass of fuel manufacturing by 56%
  • the mass of food-shipments by 38%
  • shipped mass to 3-D print a habitat for six by a whopping 85%
  • microbes could also completely replenish expired or irradiated stocks of pharmaceuticals (100%), which would provide independence from unmanned re-supply spacecraft that take up to 210 days to arrive

These would all be achieved using synthetic biology processes to turn crew waste, Martian soil, minerals, gases and from the atmosphere into food, medicine, propellants and raw materials for three-dimensional printing.

[MAKING A NEW PLANET] Mars terraforming: building a new Earth!

“The mineral and carbon composition of other celestial bodies is different from the bulk of Earth, but the earth is diverse with many extreme environments that have some relationship to those that might be found at possible bases on the Moon or Mars,” Arkin says. “Microbes could be used to greatly augment the materials available at a landing site, enable the biomanufacturing of food and pharmaceuticals, and possibly even modify and enrich local soils for agriculture in controlled environments.”

There are a lot of IFs and assumptions listed in the study, however, which the authors acknowledge. As we stand today, a lot of the processes outlined by the authors aren’t feasible at the moment, but the same thing can be said about conventional space flight technologies required for a Mars mission. That’s not to say that overcoming these challenges is impossible, far from it. The authors argue that by significantly investing in these processes, the potential payoff would be immense.

“We’ve got a long way to go since experimental proof-of-concept work in synthetic biology for space applications is just beginning, but long-duration manned missions are also a ways off,” says Amor Menezes, a postdoctoral scholar in Arkin’s research group at the Univ. of California (UC) Berkeley. “Abiotic technologies were developed for many, many decades before they were successfully utilized in space, so of course biological technologies have some catching-up to do. However, this catching-up may not be that much, and in some cases, the biological technologies may already be superior to their abiotic counterparts.”

Tags: Marsmars missionsynthetic biology

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

First Complete Picture of Nighttime Clouds on Mars

bySarah Stanley
6 days ago
mars
News

Quakes on Mars Could Support Microbes Deep Beneath Its Surface

byJordan Strickler
2 weeks ago
Biology

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

byTibi Puiu
4 weeks ago
Geology

NASA finally figures out what’s up with those “Mars spiders”

byMihai Andrei
1 month ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.