ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Orbiting supermassive black holes confirmed by astronomers for the time

This is one slow dance.

Tibi PuiubyTibi Puiu
June 28, 2017
in News, Remote sensing, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Supermassive black hole caught devouring a star
A Huge, Lazy Black Hole Is Redefining the Early Universe
Why our galaxy’s black hole has a small appetite
Astronomers image plasma flares on the bleeding edge of Milky Way’s supermassive black hole

After more than a decade of work, astronomers report the first measurement of the orbital motion between two supermassive black holes. The ungodly pair is found roughly 750 million light-years from Earth at the heart of a galaxy called 0402+379 and their cosmic dance could shed fundamental secrets about the nature of galaxies and how supermassive black holes form.

It takes two to tango

Artist impression of two supermassive black holes orbiting a common center of mass. Credit: Josh Valenzuela/UNM
Artist impression of two supermassive black holes orbiting a common center of mass. Credit: Josh Valenzuela/UNM

“For a long time, we’ve been looking into space to try and find a pair of these supermassive black holes orbiting as a result of two galaxies merging,” said University of New Mexico Professor Greg Taylor. “Even though we’ve theorized that this should be happening, nobody had ever seen it until now.”

Last year’s landmark discovery was the detection of gravitational waves by scientists working with the LIGO project. The discovery confirmed a 100-year-old prediction put forth by Albert Einstein on the basis of his theory of general relativity. Gravitational waves transport energy as gravitational radiation, a form of radiant energy similar to electromagnetic radiation, and the waves recorded by LIGO were the result of two stellar-mass black holes colliding in space.

Thanks to this groundbreaking research published in the Astrophysical Journal, we will be able to understand what processes lead to the merger of supermassive black holes that create ripples in the fabric of space-time.

To capture this unique event, the astronomers turned to the Very Long Baseline Array (VLBA), which is a system made of 10 radio telescopes scattered across the U.S. that act in unison. As early as ten years ago, the researchers were able to record several radio signal frequencies which the supermassive black holes emit. In time, the black holes’ trajectories were plotted, which confirmed we were dealing with a binary system — two black holes orbiting each other.

The minute orbital motion of the two black holes was captured using radio telescopes like this one. Credit: National Radio Astronomy Observatory.
The minute orbital motion of the two black holes was captured using radio telescopes like this one. Credit: National Radio Astronomy Observatory.

“When Dr. Taylor gave me this data I was at the very beginning of learning how to image and understand it,” said graduate student Karishma Bansal . “And, as I learned there was data going back to 2003, we plotted it and determined they are orbiting one another. It’s very exciting.”

A slow dance

The discovery is the smallest ever recorded movement of an object across the sky, also known as angular motion. That’s because the black hole pair’s orbital period is around 24,000 years so even though astronomers observed the black holes for well over a decade, they were only able to discern the slightest curvature in their obit.

“If you imagine a snail on the recently discovered Earth-like planet orbiting Proxima Centauri – a bit over four light years away – moving at one centimeter a second, that’s the angular motion we’re resolving here,” said Roger W. Romani, professor of physics at Stanford and co-author of the paper.

The two supermassive black holes have a combined mass of about 15 billion times that of our sun or 15 billion solar masses. That in itself is striking but it’s the technique which made the observation possible that’s of the most interest. Similar work will allow us to understand supermassive black holes and the galaxies they reside within, including our very own Milky Way. For instance, both the Andromeda and the Milky Way Galaxies each have a supermassive black hole at their center. In a few billion years from now, the two galaxies will collide and their two supermassive black holes should merge in an event similar to the one observed presently.

“Supermassive black holes have a lot of influence on the stars around them and the growth and evolution of the galaxy,” explained Taylor. “So, understanding more about them and what happens when they merge with one another could be important for our understanding for the universe.”

Tags: black holesupermassive black hole

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Science

Astronomers Capture the ‘Eye of Sauron’ Billions of Light Years Away and It Might Be the Most Powerful Particle Accelerator Ever Found

byTibi Puiu
3 days ago
News

A Supermassive Black Hole 36 Billion Times the Mass of the Sun Might Be the Heaviest Ever Found

byTibi Puiu
1 week ago
Astronomy

Scientists Have a Plan to Launch a Chip-Sized, Laser-Powered Spacecraft Toward a Nearby Black Hole and Wait 100 Years for It to Send a Signal Home

byJordan Strickler
1 week ago
News

The Universe’s First “Little Red Dots” May Be a New Kind of Star With a Black Hole Inside

byTibi Puiu
2 weeks ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.