ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Astrophysics

Supernova observed right after its explosion

Mihai AndreibyMihai Andrei
December 15, 2011
in Astrophysics, Remote sensing
A A
Share on FacebookShare on TwitterSubmit to Reddit

An unprecedented observation of a supernova right after its explosion has offered scientists extremely valuable insight on these cosmic explosions of biblical proportions.

PTF 11kly, a type Ia supernova, was spotted in August in the Pinwheel galaxy and is one of the closest to Earth ever found – but don’t worry just yet – at some 21 million light years away. It is so big it was actually observable with only binoculars in September, and it gave scientists the best chance yet to study this type of phenomena; astrophysicists reached some pretty interesting conclusions.

For the past half century, they’ve been analyzing type Ia supernovae, understanding that they originate from a binary star system – two stars orbiting each other. PTF 11kly originated from a white dwarf, which means that its companion couldn’t possibly have been a red giant, as previously believed. White dwarfs are usually dead forever, but in some cases, when they are part of a binary system, they can literally suck up matter from its companion (kind of nasty on their side); but sometimes, they can get too greedy and can’t stop absorbing matter, so they suck up to much and go supernova, fusing so fast that the burn can’t be stopped. Astrophysicists aren’t yet sure what kind of star the companion was.

“This is the first time through direct imaging of the explosion site, we were able to rule out certain types of stars as the companion to a Type Ia supernova,” says Weidong Li, a research scientist at the University of California, Berkeley. “The second star couldn’t have been a massive red giant.”

Analysis showed numerous elements just spewing out of the expanding fireball, including ionized oxygen, magnesium, silicon, calcium, and iron, traveling at 16,000 kilometers a second; however, oxygen traveled much faster than the rest of the elements, at 20,000 kilometers a second.

“The high-velocity oxygen shows that the oxygen wasn’t evenly distributed when the white dwarf blew up, indicating unusual clumpiness in the way it was dispersed,” says Peter Nugent of Berkeley Lab.

The explosion revealed an impressive amount of expulsion, including some rare radioactive nickel mixed up all the way through the photosphere.

“Understanding how these giant explosions create and mix materials is important because supernovae are where we get most of the elements that make up the Earth and even our own bodies – for instance, these supernovae are a major source of iron in the universe,” says Mark Sullivan of the University of Oxford. “So we are all made of bits of exploding stars.”

Via Wikipedia

RelatedPosts

Rare supernova leftovers might have produced the youngest black hole in the Milky Way
Light from huge explosion 12 billion years ago reaches Earth
Gravitational waves have scientists searching for answers
Thank exploding stars for your teeth and bones
Tags: light yearsupernova

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus
News

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

byTibi Puiu
3 days ago
News

Astronomers Spotted a Ghostly Star Orbiting Betelgeuse and Its Days Are Already Numbered

byTudor Tarita
4 weeks ago
SNR 0509-67.5
News

Astronomers Found a Star That Exploded Twice Before Dying

byJordan Strickler
2 months ago
News

Astronomers Just Found the Most Powerful Cosmic Event Since the Big Bang. It’s At Least 25 Times Stronger Than Any Supernova

byTibi Puiu
2 months ago

Recent news

The disturbing reason why Japan’s Olympic athletes wear outfits designed to block infrared

August 19, 2025
Erin Kunz holds a microelectrode array in the Clark Center, Stanford University, on Thursday, August 8, 2025, in Stanford, Calif. The array is implanted in the brain to collect data. (Photo by Jim Gensheimer)

Brain Implant Translates Silent Inner Speech into Words, But Critics Raise Fears of Mind Reading Without Consent

August 19, 2025

‘Skin in a Syringe’ Might be the Future of Scar Free Healing For Burn Victims

August 18, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.