ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Physicists propose new, donut-shaped planetary body: the synestia

Homer Simpson would have been impressed. D'oh!

Tibi PuiubyTibi Puiu
May 22, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

A pair of physicists is proposing a new type of planetary body: the donut-shaped body of vaporized and molten rock called a synestia. This kind of planetary body is predicted to form under certain conditions when planet-sized objects collide into each other with high energy and angular momentum. It’s possible Earth went through an intermediate synestia state before the vaporized gas and dust condensed into the spherical bundle of joy we all know and love.

Shaped like a red blood cell, the synestia is the third type of planetary body. Credit: Simon Lock.
Shaped like a red blood cell, the synestia is the third type of planetary body. Credit: Simon Lock.

The novel planetary body — the third after ‘planet’ and ‘planet and disk’, i.e. Saturn — was first described by Simon Lock, a graduate student at Harvard, and Sarah Stewart, professor of planetary science at the University of California, Davis. Both researchers are academically focused on studying what happens when planet-sized objects smash into each other. Particularly, the two are interested in what happens during the collisions of massive spinning objects.

Any rotating object has an angular momentum which needs to stay conserved. The law of conservation of angular momentum states that when no external torque acts on an object, no change of angular momentum will occur. If the net torque is zero, then angular momentum is constant or conserved.

It’s the conservation of angular momentum that can explain why an ice skater can increase the angular acceleration by bringing her arms and legs close to the vertical axis of rotation. Because the moment is conserved, when the skater decreases rotational inertia, the rotation rate must increase. Ultimately, the skater’s angular momentum is the same. And when two ice skaters catch hold of each other, the angular momentum of each skater adds up — again, per the law of conservation of angular momentum, the summed angular momentum must remain the same.

ice skater angular momentum

And as a nice bit of trivia, it’s because of this law that the solar system is flat.

Now, imagine what happens when your two skaters are actually two planets that crash into each other. When Lock and Stewart modeled what happened to Earth-sized rocky planets after a collision with other large objects over a range of high temperatures and high angular momentum, they found a completely new planetary structure. They have dubbed the new object a “synestia,” from “syn-,” “together” and “Hestia,” Greek goddess of architecture and structures.

RelatedPosts

Scientists find new dwarf planet in our solar system
Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust
It Is Possible Jupiter Could Support Life, Scientists Say
Jovian planets — the giants of solar systems

To understand how a synestia can form, you need to again imagine what happens during a giant impact. To make things easier, take our planet — Earth. More than 4.5 billion years ago, a proto-Earth and a Mars-sized body called Theia collided. In the wake of this cosmic crash, Earth and its moon were formed. We’re certain of this because the isotopic compositions of a variety of elements collected from both terrestrial and lunar rocks are nearly identical. What’s not very clear is how exactly all this hot tango danced out.

What’s perhaps the most convincing Earth-formation theory so far was published in September, 2016, and argues that following the collision both bodies became completely vaporized. Since the result of the giant impact is molten or gaseous, its volume will be higher than the combined volume of the two planetary bodies. If this mass gets big enough and is moving fast enough — if the conserved momentum is big enough in other words — it can then form this huge, disk-shape synestia. And this object would be much larger than a solid planet with a disk.

According to Stewart, most planets experienced collisions that formed a synestia at some point in their history. In the case of Earth, if this ever happened, the synestia must not have lasted for very long — perhaps only a hundred years.

Nevertheless, no one has yet observed a synestia directly — it’s still a theoretical oddity. After the James Webb Telescope is launched in space in late 2018, we might get the chance once astronomers set the instruments’ gaze towards rocky exoplanets and gas giants outside our solar system.

The findings appeared in the Journal of Geophysical Research: Planets.

Tags: planetplanetary body

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
1 month ago
Astronomy

The James Webb telescope just found a planet by actually ‘seeing’ it

byMihai Andrei
2 months ago
News

This Planet Is So Close to Its Star It Is Literally Falling Apart, Leaving a Comet-like Tail of Dust in Space

byJordan Strickler
4 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
5 months ago

Recent news

Can AI help us reduce hiring bias? It’s possible, but it needs healthy human values around it

August 22, 2025
a cat napping

Does a short nap actually boost your brain? Here’s what the science says

August 22, 2025

Hidden for over a century, a preserved Tasmanian Tiger head “found in a bucket” may bring the lost species back from extinction

August 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.