ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

This star is so massive it’s forming another star instead of planets

Now, that's a first!

Tibi PuiubyTibi Puiu
December 19, 2018
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit
Artist impression of the disc of dust and gas surrounding the massive protostar MM 1a, with its companion MM 1b forming in the outer regions. Credit: J. D. Ilee / University of Leeds.
Artist impression of the disc of dust and gas surrounding the massive protostar MM 1a, with its companion MM 1b forming in the outer regions. Credit: J. D. Ilee / University of Leeds.

When astronomers cast their telescope towards an infant star, they were surprised to find that it was nursing a smaller stellar companion within its massive stellar disk. The amazing discovery marks the first time scientists have observed a star forming out of the fragmented disk of another.

Mega star and mini star

Some solar systems have two stars — they generally have a common center of gravity around which planets, asteroids, and other celestial bodies orbit. Such binary systems are quite common in the universe and astronomers believe that they usually form from the same molecular cloud.

Once a star or binary system settles, it starts forming planets out of the dense disk of gas and dust that surrounds them. Imagine the surprise of astronomers from the University of Leeds when they zoomed in on a young star called MM 1a and found a much smaller star, MM1b, lurking in the outer accretion disk where planets should normally form.

“Stars form within large clouds of gas and dust in interstellar space,” said Dr. Ilee, from the School of Physics and Astronomy at Leeds, said in a statement.

“When these clouds collapse under gravity, they begin to rotate faster, forming a disc around them. In low mass stars like our Sun, it is in these discs that planets can form.”

“In this case, the star and disc we have observed is so massive that, rather than witnessing a planet forming in the disc, we are seeing another star being born.”

The astronomers used turned to the Atacama Large Millimetre/submillimetre Array (ALMA), nested atop the Chilean desert, to spot the unusual stellar pairing. This unique instrument exploits a phenomenon called interferometry which enables 66 individual dishes to mimic the power of a single telescope with a theoretical diameter of 4 kilometers.

Credit: J. D. Ilee / University of Leeds.

The researchers were able to calculate the mass of both stars by measuring the amount of radiation emitted by the fragmented disk, as well as the very subtle shifts in the frequency of light emitted by disk’s gas. They found that MM 1a is 40 times more massive than the Sun while its companion star, MM 1b, weighs less than half the mass of the Sun.

Binary stars are often very similar in mass, meaning they likely formed as siblings. In this particular case, the mass ratio of the two stars is 80 to 1, clearly suggesting an entirely different process of formation for the two cosmic objects.

The British researchers came to the conclusion that the most favorable formation process for MM1b is in the outer regions of the massive accretion disk. In this outmost region, the disk can be gravitationally unstable, thereby collapsing under its own weight, forming a new star.

RelatedPosts

Astronomers find two failed stars wandering the universe together
How hot is the sun?
Biomarker molecule discovered “in abundance” around alien star, but still no life
Researchers found a supermassive black hole choking on its meal

What’s more, the researchers believe that the small, young star could be surrounded by an accretion disk, which could lead to the formation of planets of its own. That’s a hypothesis that will need to be verified by subsequent observations. But even if such planets are in the process of forming or already exist, they’ll be shortlived.

 “Stars as massive as MM 1a only live for around a million years before exploding as powerful supernovae, so while MM 1b may have the potential to form its own planetary system in the future, it won’t be around for long,” Dr. Ilee said.

The rare binary system was described in the Astrophysical Journal Letters.

Tags: binary systemstar

Share7TweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Astrophysics

Astrophysicists are stunned to see a black hole “burping” several years after having a meal

byAlexandru Micu
3 years ago
News

Almost two billion stars: Largest, most detailed star catalog to date revealed

byMihai Andrei
3 years ago
Astronomy

Why do stars twinkle, or do they twinkle at all? For astronomers, this is important

byPaula Ferreira
4 years ago
This artist’s impression shows NGP–190387, a star-forming, dusty galaxy that is so far away its light has taken over 12 billion years to reach us.  ALMA observations have revealed the presence of fluorine in the gas clouds of NGP–190387. To date, this is the most distant detection of the element in a star-forming galaxy, one that we see as it was only 1.4 billion years after the Big Bang — about 10% of the current age of the Universe. The discovery sheds a new light on how  stars forge fluorine, suggesting short-lived stars known as Wolf–Rayet are its most likely birthplace.
Chemistry

Astronomers find the farthest evidence of fluoride to date, in a distant galaxy

byAlexandru Micu
4 years ago

Recent news

Scientists Blasted Human Cells With 5G Radiation and the Results Are In

May 15, 2025

Orange Cats Are Genetically Unlike Any Other Mammal and Now We Know Why

May 15, 2025

Scientists Found ‘Anti Spicy’ Compounds That Make Hot Peppers Taste Milder

May 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.