ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

Jupiter is likely the oldest planet in the solar system

This fatty likely had a great influence on how other later planets formed in the early solar system, including Earth.

Tibi PuiubyTibi Puiu
June 14, 2017
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

Jupiter is the biggest, most massive — and according to the latest research — oldest planet in our solar system. The news comes from the Lawrence Livermore National Laboratory where American researchers, with the help of German colleagues at the University of Münsterin, found Jupiter must have formed just one million years after the solar system was established. Knowing how old Jupiter is will help astronomers better understand how the grand solar system itself evolved to its current architecture.

Artist's conception of the dust and gas surrounding a newly formed planetary system. Credit: NASA.
Artist’s conception of the dust and gas surrounding a newly formed planetary system. Credit: NASA.

The Universe is about 13.7 billion years old, according to current estimates. The Sun, planets, asteroids, and comets that make up our solar system are much younger, though. Their story first started some 4.55 billion years ago when a cloud of interstellar dust and gas was all there was. A nearby supernova explosion blasted new energy into the cloud which began to collapse on itself. Most of the material condensed in the center of the cloud to form the sun, with only 1% remaining in orbit around the new star.

In time, all of the leftover gas and dust particles will clump together due to electrostatic and gravitational attraction in a process called accretion. Computer models show that in only a few million years, several thousand bodies the size of large asteroids will coalesce into larger units that we now see as planets. It was never clear, however, what was the first planet.

By looking at tungsten and molybdenum isotopes on iron meteorites, researchers found these are made from two distinct nebular sources that coexisted but remained separated between 1 and 3-4 million years after the solar system formed. According to a model run on this data, the most plausible explanation is that the nebula was separated by an intruding early Jupiter.

“The most plausible mechanism for this efficient separation is the formation of Jupiter, opening a gap in the disc (a plane of gas and dust from stars) and preventing the exchange of material between the two reservoirs,” said Thomas Kruijer, lead author of the paper published Proceedings of the National Academy of Sciences. “Jupiter is the oldest planet of the solar system, and its solid core formed well before the solar nebula gas dissipated, consistent with the core accretion model for giant planet formation.”

Because Jupiter is so massive, if it really was the first planet to form, it must have had a big effect on the dynamics of the solar accretion disk. Scientists always knew Jupiter must have formed early but its formation was never accurately dated.

The problem has always been the lack of samples from Jupiter, like the ones we have from Earth, Mars, or the moon. Our next best thing is meteorites derived from asteroids which must have formed at the dawn of the solar system.

The isotopic analysis suggests Jupiter’s core formed within 1 million years and continued to grow to 50 Earth masses until 3-4 million years after the solar system formed. This timeframe bodes well with our current best models that explain how gas giants such as Jupiter or Saturn form. These suggest that the gas giant’s core must have formed before the dissipation of the solar nebula (up to 10 million years after the solar system formed) in order to accumulate gas onto the core.

RelatedPosts

Asteroid belts may be crucial to intelligent life formation – alien life could be rarer than thought
Jupiter may have ousted a fifth gas giant out of the solar system 4 billion year ago
Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed
Astronomers find huge lava lake on Jupiter’s moon Io

“Our measurements show that the growth of Jupiter can be dated using the distinct genetic heritage and formation times of meteorites,” Kruijer said.

This isn’t the final word though. For instance, some models have suggested Jupiter doesn’t even have a core. Instead, dust and gas condensed into a gas giant. According to data obtained by the Juno probe, the truth might lie somewhere in between — a mushy core that might even be larger than current estimates. Whatever’s the case, Jupiter seems full of surprises these days. Just today, ZME Science reported scientists found two new Jovian moons — that’s 69 moons in total!

Tags: jupitersolar system

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

News

Astronomers May Have Discovered The First Rocky Earth-Like World With An Atmosphere, Just 41 Light Years Out

byHannah Wakefordand1 others
5 days ago
This is HOPS-315, a baby star where astronomers have observed evidence for the earliest stages of planet formation. The image was taken with the Atacama Large Millimeter/submillimeter Array (ALMA), in which ESO is a partner. Together with data from the James Webb Space Telescope (JWST), these observations show that hot minerals are beginning to solidify. In orange we see the distribution of carbon monoxide, blowing away from the star in a butterfly-shaped wind. In blue we see a narrow jet of silicon monoxide, also beaming away from the star. These gaseous winds and jets are common around baby stars like HOPS-315. Together the ALMA and JWST observations indicate that, in addition to these features, there is also a disc of gaseous silicon monoxide around the star that is condensing into solid silicates –– the first stages of planetary formation.
News

For the First Time Ever We Can See Planets Starting to Form Around a Star

byJordan Strickler
2 months ago
News

Jupiter Was Twice Its Size and Had a Magnetic Field 50 Times Stronger After the Solar System Formed

byTibi Puiu
4 months ago
Science

Ancient Water, Alien Salts, and Life’s Building Blocks Were All Found in Bennu Asteroid

byTimothy McCoy
8 months ago

Recent news

How Bees Use the Sun for Navigation Even on Cloudy Days

September 12, 2025

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

September 12, 2025

When Ice Gets Bent, It Sparks: A Surprising Source of Electricity in Nature’s Coldest Corners

September 12, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.