ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → News

How to weigh a star: a new mathematical method

A novel mathematical model can weigh the mass of a pulsar - a rapidly rotating magnetized neutran star - using principles of nuclear physics, rather than gravity. Up until now, the mass of a star could only be determined in relation with other bodies, based on the gravitational pull these exerted. Now, using the new model scientists will be able to study pulsars in isolation, allowing for more precise measurements than ever before.

Tibi PuiubyTibi Puiu
October 6, 2015 - Updated on November 16, 2020
in News, Space
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Scientists Observe Giant Burst of Radio Waves
Could wormholes actually exist?
Incredibly active galaxy cluster creates 800 stars every year
The star that should not exist

A novel mathematical model can weigh the mass of a pulsar – a rapidly rotating magnetized neutran star – using principles of nuclear physics, rather than gravity. Up until now, the mass of a star could only be determined in relation with other bodies, based on the gravitational pull these exerted. Now, using the new model scientists will be able to study pulsars in isolation, allowing for more precise measurements than ever before.

Artist illustration of Pulsar in J140135. Credit: NASA
Artist illustration of Pulsar in J140135. Credit: NASA

When very massive stars die, typically in a supernova explosion, what’s leftover is a rotating neutron star that emits a  focused beam of electromagnetic radiation, only visible if you’re standing in its path like a lighthouse. These rotating neutron stars are called “pulsars” in short because these emissions seem to be pulsing into outer space.

When a pulsar first forms, it has the most energy and fastest rotational speed. As it releases electromagnetic power through its beams, it gradually slows down. Within 10 to 100 million years, it slows to the point that its beams shut off and the pulsar becomes quiet. But although older pulsars rotate stably, the younger ones go through periods of slowing or speeding called ‘glitches’. Scientists think these glitches are caused by the motion of the superfluids found inside the neutron stars. This motion transfers energy, causing them to pick up rotation or slow down.

“Imagine the pulsar as a bowl of soup, with the bowl spinning at one speed and the soup spinning faster. Friction between the inside of the bowl and its contents, the soup, will cause the bowl to speed up. The more soup there is, the faster the bowl will be made to rotate,” says , Nils Andersson a Professor of Applied Mathematics at University of Southampton.

The Southampton team fed radio and X-ray data into their model to eventually determine the mass of pulsars that glitch. This could prove extremely useful for future, next generation observatories like the  Square Kilometre Array (SKA) and the Low Frequency Array (LOFAR). “Our results provide an exciting new link between the study of distant astronomical objects and laboratory work in both high-energy and low-temperature physics. It is a great example of interdisciplinary science,” says Professor Andersson.

Tags: pulsarstar

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

This colorful web of wispy gas filaments is the Vela Supernova Remnant, an expanding nebula of cosmic debris left over from a massive star that exploded about 11,000 years ago. This image was taken with the Department of Energy-fabricated Dark Energy Camera (DECam), mounted on the US National Science Foundation's Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF’s NOIRLab. The striking reds, yellows, and blues in this image were achieved through the use of three DECam filters that each collect a specific color of light. Separate images were taken in each filter and then stacked on top of each other to produce this high-resolution image that contains 1.3 gigapixels and showcases the intricate web-like filaments snaking throughout the expanding cloud of gas.
Astronomy

Cosmic fireworks: zombie star explodes, creating massive filament structures

byMihai Andrei
5 months ago
Astronomy

Astronomers use JWST to peer into the heart of the Crab Nebula

byMihai Andrei
12 months ago
This artist’s impression shows the pulsar PSR J1023+0038 stealing gas from its companion star. This gas accumulates in a disc around the pulsar, slowly falls towards it, and is eventually expelled in a narrow jet. In addition, there is a wind of particles blowing away from the pulsar, represented here by a cloud of very small dots. This wind clashes with the infalling gas, heating it up and making the system glow brightly in X-rays and ultraviolet and visible light. Eventually, blobs of this hot gas are expelled along the jet, and the pulsar returns to the initial, fainter state, repeating the cycle. This pulsar has been observed to switch incessantly between these two states every few seconds or minutes.
News

Cosmic ‘cannonballs’ may explain mystery of fast-switching pulsar

byJordan Strickler
2 years ago
Astrophysics

Astrophysicists are stunned to see a black hole “burping” several years after having a meal

byAlexandru Micu
3 years ago

Recent news

A Team of Researchers Brought the World’s First Chatbot Back to Life After 60 Years

May 22, 2025
default

From Farms to Lost Cities, Drones Are Quietly Revolutionizing Modern Science

May 22, 2025

Professional Bodybuilders Are Five Times More Likely to Die Suddenly Than Amateurs. Yes, it’s Because of the Drugs

May 22, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.