Quantcast
ZME Science
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    Menu
    Natural Sciences
    Health
    History & Humanities
    Space & Astronomy
    Technology
    Culture
    Resources
    Natural Sciences

    Physics

    • Matter and Energy
    • Quantum Mechanics
    • Thermodynamics

    Chemistry

    • Periodic Table
    • Applied Chemistry
    • Materials
    • Physical Chemistry

    Biology

    • Anatomy
    • Biochemistry
    • Ecology
    • Genetics
    • Microbiology
    • Plants and Fungi

    Geology and Paleontology

    • Planet Earth
    • Earth Dynamics
    • Rocks and Minerals
    • Volcanoes
    • Dinosaurs
    • Fossils

    Animals

    • Mammals
    • Birds
    • Fish
    • Reptiles
    • Amphibians
    • Invertebrates
    • Pets
    • Conservation
    • Animals Facts

    Climate and Weather

    • Climate Change
    • Weather and Atmosphere

    Geography

    Mathematics

    Health
    • Drugs
    • Diseases and Conditions
    • Human Body
    • Mind and Brain
    • Food and Nutrition
    • Wellness
    History & Humanities
    • Anthropology
    • Archaeology
    • Economics
    • History
    • People
    • Sociology
    Space & Astronomy
    • The Solar System
    • The Sun
    • The Moon
    • Planets
    • Asteroids, Meteors and Comets
    • Astronomy
    • Astrophysics
    • Cosmology
    • Exoplanets and Alien Life
    • Spaceflight and Exploration
    Technology
    • Computer Science & IT
    • Engineering
    • Inventions
    • Sustainability
    • Renewable Energy
    • Green Living
    Culture
    • Culture and Society
    • Bizarre Stories
    • Lifestyle
    • Art and Music
    • Gaming
    • Books
    • Movies and Shows
    Resources
    • How To
    • Science Careers
    • Metascience
    • Fringe Science
    • Science Experiments
    • School and Study
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact
No Result
View All Result
ZME Science

No Result
View All Result
ZME Science

Home → Space → Alien life

Earth-sized planets all have relatively circular orbits, study finds

Dragos Mitrica by Dragos Mitrica
June 2, 2015
in Alien life, News, Space

For decades, researchers have studied our planet’s orbit with growing interest: is there something special about the way the Earth revolves around the Sun, is it a necessary condition for life to emerge? A team of researchers from MIT studied 74 Earth-sized exoplanets and reports that all of them have fairly circular orbits around their stars.

Circular vs Eccentric

Image courtesy of NASA.

The study, published in the Astrophysical Journal, reports that the 74 exoplanets revolve their 28 stars at relatively circular trajectory, standing in stark contrast to larger exoplanets, which have much more eccentric orbits.

“Twenty years ago, we only knew about our solar system, and everything was circular and so everyone expected circular orbits everywhere,” says Vincent Van Eylen, a visiting graduate student in MIT’s Department of Physics. “Then we started finding giant exoplanets, and we found suddenly a whole range of eccentricities, so there was an open question about whether this would also hold for smaller planets. We find that for small planets, circular is probably the norm.”

It’s not clear why this happens, or whether this has something to do with with their size, or whether it’s a coincidence. Having a circular orbit is one of the proposed requirements for supporting life; otherwise, the climatic swings between seasons are simply too massive. It’s not impossible for life to exist on planets with eccentric orbits, but it just seems much more unlikely.

“If eccentric orbits are common for habitable planets, that would be quite a worry for life, because they would have such a large range of climate properties,” Van Eylen says. “But what we find is, probably we don’t have to worry too much because circular cases are fairly common.”

All in all, the study brings good news for detecting life outside our solar system.

Detecting Planets

Artistic representation of the Kepler Telescope. Image via Wikipedia.
Artistic representation of the Kepler Telescope. Image via Wikipedia.

Most earth-sized planets are detected with the transit method – astronomers study the light given off by a star and record eventual dips in starlight when a planet transits in front of that star. To obtain actual transit data, the team looked through data collected over the past four years by NASA’s Kepler telescope. Kepler is a space observatory launched by NASA to discover Earth-like planets orbiting other stars. The telescope monitored the brightness of over 145,000 stars, only a fraction of which have been studied in detail. For this study, they focused on 28 stars orbited by 74 earth-like planets.

Their results came out pretty surprising: all the planets run (approximately) circular orbits around their stars.

“We found that most of them matched pretty closely, which means they’re pretty close to being circular,” Van Eylen says. “We are very certain that if very high eccentricities were common, we would’ve seen that, which we don’t.”

However, David Kipping, an astronomer at the Harvard-Smithsonian Center for Astrophysics, notes that while interesting, a 74 planets sample size is not large enough to draw some definite conclusions.

“I think that the evidence for smaller planets having more circular orbits is presently tentative,” says Kipping, who was not involved in the research. “It prompts us to investigate this question in more detail and see whether this is indeed a universal trend, or a feature of the small sample considered.”

The logical thing to do next is study more planets and see if these initial results stand up. Kepler has a huge database, and much of that data hasn’t been studied to begin with. Just decades ago we didn’t know any exoplanets, and now we’re studying the orbits of exoplanets and we want a greater sample size – it’s a great time to be alive.

 

 

 

 

Was this helpful?


Thanks for your feedback!

Related posts:
  1. NASA finds 7 Earth-sized planets in a star nearby. Three are in the habitable zone
  2. NASA finds new exoplanet that orbits three different suns
  3. 1 in 5 stars may have Earth-sized planets
  4. Not one, but two yet to be confirmed Earth-sized planets could orbit in the outer solar system
  5. TRAPPIST-1, the dwarf star with seven Earth-sized planets, is older than our solar system
Tags: earth-sizehabitable planetKepler telescope

ADVERTISEMENT
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
  • Reviews
  • More
  • About Us

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • News
  • Environment
  • Health
  • Future
  • Space
  • Features
    • Natural Sciences
    • Health
    • History and Humanities
    • Space & Astronomy
    • Culture
    • Technology
    • Resources
  • Reviews
  • More
    • Agriculture
    • Anthropology
    • Biology
    • Chemistry
    • Electronics
    • Geology
    • History
    • Mathematics
    • Nanotechnology
    • Economics
    • Paleontology
    • Physics
    • Psychology
    • Robotics
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Privacy Policy
    • Contact

© 2007-2021 ZME Science - Not exactly rocket science. All Rights Reserved.

Don’t you want to get smarter every day?

YES, sign me up!

Over 35,000 subscribers can’t be wrong. Don’t worry, we never spam. By signing up you agree to our privacy policy.

✕
ZME Science News

FREE
VIEW