ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space → Alien life

Scientist Interviews: Marie-Eve Naud [Astrobiology]

Mihai AndreibyMihai Andrei
June 25, 2014 - Updated on June 26, 2014
in Alien life, Astronomy, Interviews
A A
Share on FacebookShare on TwitterSubmit to Reddit

A while ago, we were telling you about the discovery of a huge exoplanet – a gas giant, found just 155 light years away from Earth. The head researcher behind that study was Marie-Eve Naud. Her main research field is the detection and characterization of exoplanets, with a focus on astrobiology. She was kind enough to talk to us and shed some light on what she studies, and what’s it like to be in such an exciting field! You can read the interview below:

ZME Science (Andrei): I read that you directly imaged the planet in infrared. How did you find it, is it like looking for a needle in a hay stack, or are there certain clues for finding planets? Do you have certain clusters of stars which are more likely to host planets?


unnamed Marie-Eve Naud
: With the technique that we use, which is called “Direct Imaging”, it’s much easier to find planets around young stars, i.e. stars that are only a few dozen to ~100-200Myr (in comparison, our Sun is ~4.6Gyr). This is the case because young stars harbour young planets, which are still contracting, and thus hotter and bigger, so more luminous. We were thus searching around a sample of stars which we knew were quite young because they were recently identified as members of Young Moving Groups, i.e. groups of young stars that were formed “together”, at a similar point in space and time. Just to be clear, though, it’s not necessarily that these young stars are more likely to harbour planets, it’s just that we are more likely to be able to find them there with the technique we used.

A: Could this technique have worked if the planet was smaller or closer to its star?

M: Very good good question. To a certain extent, no. It is really hard to find planets the way we do, i.e. by seeing “directly” the light of the planet. If the planet is too close or too faint (which is the case if it is smaller – or older, like I said earlier), it’s hard harder to disentangle its light from that, much more intense, of the parent star. However, some instruments like the Gemini Planet Imager (GPI) on the Gemini South telescope in Chile were specifically built to detect smaller and closer planets (still giants and still quite far from their stars, but smaller and closer than GU Psc b).

A: I read that your co-author René Doyon said that “the great distance that separates it from its star makes possible a thorough study with a variety of instruments” – what instruments are we talking about? What kind of information can we derive from studying it with different instruments?

M: For example, we were able to get a spectrum of the planet using a spectrograph called GNIRS on Gemini North telescope, located in Hawaii, which gave us information about the temperature, and from which we were able to estimate that the mass is between 9 and 13 times that of Jupiter.

A: Wow, that’s amazing! Speaking of temperature, the surface of the planet is 800 °C (1472 °F) – almost twice as hot as Mercury, even though it’s incredibly far from its star. Is this because the planet is young and hasn’t had a chance to cool down, or is it something else?

M: Exactly as you say ;) The planet does not receive a significant amount of heating from its star, which is too far and too faint (only about 1/3 of the mass of the Sun).

A: Are planets like this common in the galaxy/universe?

M: We still have to figure this out, but we don’t think so. Out of the 90 stars we surveyed, GU Psc was the only one around which we detected a planetary-mass companion that far.

A: What will your future research focus on?

RelatedPosts

Are aliens real? Here’s what the scientists think
Scientists use astronomy software to protect endangered creatures from poachers
Ancient cave paintings may be sign of prehistoric astronomy
Tasting the surface of Europa

M:I’ll first try to assess more quantitatively the occurrence of these very wide, giant companions by doing a statistical study of our results. Also, I will continue to study GU Psc b to learn more about this fascinating object!

A: Keep up the good work!Again, thank you for taking the time to write to me.

M: My pleasure!

 

Tags: astrobiologyastronomydirect imagingmarie eve naud

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

News

Astronomers Found a Perfect Space Bubble Dozens of Light-Years Across and No One Knows How It Got There

byTibi Puiu
4 weeks ago
Archaeology

Did the Ancient Egyptians Paint the Milky Way on Their Coffins?

byTibi Puiu
2 months ago
Science

A Rare ‘Micromoon’ Is Rising This Weekend and Most People Won’t Notice

byTibi Puiu
2 months ago
News

Astronomers Discover 128 New Moons Around Saturn Securing Its Title as the Moon King and Leaving Jupiter in the Dust

byTibi Puiu
3 months ago

Recent news

This Plastic Dissolves in Seawater and Leaves Behind Zero Microplastics

June 14, 2025

Women Rate Women’s Looks Higher Than Even Men

June 14, 2025

AI-Based Method Restores Priceless Renaissance Art in Under 4 Hours Rather Than Months

June 13, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.