ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Space

AI helps NASA look at the Sun with new eyes

Hindsight is 20/20 -- and so is a telescope equipped with AI.

Mihai AndreibyMihai Andrei
July 26, 2021
in Future, News, Space, Technology
A A
Share on FacebookShare on TwitterSubmit to Reddit
The top row of images shows the degradation of AIA’s channel over the years since SDO’s launch. The bottom row of images is corrected for this degradation using a machine learning algorithm. Credit: Luiz Dos Santos/NASA GSFC.

It’s not easy being a telescope — just look at Hubble’s recent woes (and Hubble is hardly an exception). But being a solar telescope, constantly being exposed to intense light and particle bombardment, is especially rough.

Solar telescopes have to be constantly recalibrated and checked, not to ensure that damage isn’t happening — because damage is always happening. Instead, they have to be recalibrated to understand just how the instrument is changing under the effect of the Sun.

But recalibrating a telescope like NASA’s Solar Dynamics Observatory, which is in Earth orbit, isn’t easy. Its Atmospheric Imagery Assembly, or AIA, created a trove of solar images enabling us to understand our star better than ever before. In order to recalibrate AIA, researchers have to use sounding rockets: smaller rockets that carry a few instruments and only fly for about 15 minutes or so into space.

The reason why the rockets are needed is that the wavelengths that AIA is analyzing can’t be observed from Earth. They’re filtered by the atmosphere. So you need the sounding rockets carrying a small telescope to look at the same wavelengths and map out how AIA’s lenses are changing.

The Sun seen by AIA in 304 Angstrom light in 2021 before degradation correction (left) and with corrections from a sounding rocket calibration (right). Credits: NASA GSFC

Obviously, the rocket procedure isn’t ideal. It costs a bit, and rockets can’t always be launched. So a group of NASA researchers looked for a more elegant solution.

“The current best calibration techniques rely on flights of sounding rockets to maintain absolute calibration. These flights are infrequent, complex, and limited to a single vantage point, however,” the new study reads. But that’s only part of the challenge.

“It’s also important for deep space missions, which won’t have the option of sounding rocket calibration,” said Dr. Luiz Dos Santos, a solar physicist  at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author on the paper. “We’re tackling two problems at once.” 

First, they set out to train a machine-learning algorithm to recognize solar structures and compare them with existing AIA data — they used images from the sounding rockets for that. The idea was that, by looking at enough images of a solar flare, the algorithm could identify a solar flare regardless of AIA lens degradation; and then, it could also figure out how much calibration was needed.

After enough examples, they gave the algorithm images to see if it would correctly identify just how much calibration was needed. The approach worked on multiple wavelengths.

RelatedPosts

New study debunks preposterous claims of arsenic-thriving bacteria
You can now access all of NASA’s science – for free
Early asteroids in our solar system may have been giant mudballs, not rocks
NASA wants you to taste what’s on the Martian space-food menu

“This was the big thing,” Dos Santos said. “Instead of just identifying it on the same wavelength, we’re identifying structures across the wavelengths.” 

This image shows seven of the ultraviolet wavelengths observed by the Atmospheric Imaging Assembly on board NASA’s Solar Dynamics Observatory. The top row is observations taken from May 2010 and the bottom row shows observations from 2019, without any corrections, showing how the instrument degraded over time.
Credits: Luiz Dos Santos/NASA GSFC.

When they compared the virtual calibration (algorithm calibration predictions) with the data from the sounding rockets, the results were very similar, indicating that the algorithm had done a good job at estimating what type of calibration was needed.

The approach can also be used for more space missions, even for deep space missions where calibration methods with rockets won’t be possible.

The study was published in the journal Astronomy and Astrophysics.

Tags: artificial intelligencenasaSDO

ShareTweetShare
Mihai Andrei

Mihai Andrei

Dr. Andrei Mihai is a geophysicist and founder of ZME Science. He has a Ph.D. in geophysics and archaeology and has completed courses from prestigious universities (with programs ranging from climate and astronomy to chemistry and geology). He is passionate about making research more accessible to everyone and communicating news and features to a broad audience.

Related Posts

AI-generated image.
Future

Does AI Have Free Will? This Philosopher Thinks So

byMihai Andrei
4 days ago
History

AI Would Obliterate the Nazi’s WWII Enigma Code in Minutes—Here’s Why That Matters Today

byTudor Tarita
7 days ago
Future

This Chip Trains AI Using Only Light — And It’s a Game Changer

byMihai Andrei
2 weeks ago
Future

NASA Captured a Supersonic Jet Breaking the Sound Barrier and the Image Is Unreal

byTibi Puiu
3 weeks ago

Recent news

The Worm That Outsourced Locomotion to Its (Many) Butts

May 16, 2025

The unusual world of Roman Collegia — or how to start a company in Ancient Rome

May 16, 2025
Merton College, University of Oxford. Located in Oxford, Oxfordshire, England, UK. Original public domain image from Wikimedia Commons

For over 500 years, Oxford graduates pledged to hate Henry Symeonis. So, who is he?

May 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.