ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Researchers dive deep into the genetic legacy of the transatlantic slave trade

The transatlantic slave trade was at its height between 1750 and 1850. Now, a new study analyzing the genomes of people with African ancestry has confirmed this and provides more insight.

Tibi PuiubyTibi Puiu
March 3, 2020
in Genetics, Health, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit
Print showing an alleged incident of an enslaved African girl whipped to death for refusing to dance naked on the deck of the slave ship Recovery, a slaver owned by Bristol merchants. Captain John Kimber was denounced before the House of Commons by William Wilberforce over the incident. In response to outrage by abolitionists, Captain Kimber was brought up on charges before the High Court of Admiralty in June 1792, but acquitted of all charges. Credit: United States Library of Congress’s Prints and Photographs division.  

Researchers in Brazil combined historical and genetic data to reveal new insights about the transatlantic slave trade that saw more than 9 million Africans shipped in chains to the Americans from the early 16th century until the mid-19th century. The findings suggest that the African populations imported their genetic diversity and spread their mutations in the Americas through admixture with indigenous and European populations.

“We know in the Americas that the slave trade was a human tragedy, but it is part of our history and identity. This is why my group, but mainly myself and my former PhD student Mateus Gouveia focused in the African Diaspora,” Eduardo Tarazona-Santos, a researcher at the Federal University of Minas Gerais in Brazil and lead author of the new study, told ZME Science.

African populations are the most diverse in the world, genetically speaking. Tarazona worked closely with colleagues in Brazil, Peru, and the United States to assemble what he calls the “largest up-to-date dataset of Americas and African genetic data”, which includes 6,267 individuals with more than 10% African ancestry from 25 populations.

Researchers compared the genetic data with historical demographic data from Slave Voyages database, which tracked and mapped the dispersal of enslaved Africa into the Americas.

“We came out with a mathematical method that makes this comparison compatible. Then we realized that comparing genetic and historical-demography data is something modern geneticists had forgotten to do during the last 10-20 years, but it this kind of comparisons were more common before and have a solid tradition in human population genetics, since the work by Luca Cavalli-Sforza (who passed away in 2018) sixty years ago in the Parma Valley in Italy, where he compared genetic data (from blood groups) with parish record data. So recovering this kind of work, is like making a tribute to Luca Cavalli-Sforza. Reading his books has been an inspiration for many young investigators that in the nineties decided to dedicate to human population genetics, as I did,” Tarazona said.

The Transatlantic Slave Trade transported more than 9 million Africans to the Americas between the early 16th and the mid-19th centuries. Credit: Eduardo Tarazona-Santos, of the Federal University of Minas Gerais in Brazil.

The researchers found that West Central African ancestry (from countries such as Nigeria and Ghana) is the most common in the Americas. West African ancestry (i.e. Senegal and Gambia) increases going northward while bantu ancestry (from south and southeast Africa) is more significant in the South of Brazil.

Historical records show that the transatlantic slave trade was at its height between 1750 and 1850. The new study found that this period also coincides with the most admixture between imported African populations and locals of European and indigenous ancestry. This timing implies that the 19th century was critical in shaping the structure of the African gene pool in the New World.

“The African Diaspora was so massive (>9 million people), that the genetic diversity observed in the African portions of our admixed genomes is similar to that of African populations of origin of slavery. However, admixture homogenized this diversity (and the mutations responsible for diseases) between the different populations of the African continent,” Tarazona told ZME.

All in all, the study provides unique insights into the gene flow caused by the massive transatlantic slave trade, whose influence is still important in today’s social and cultural setting in the Americas.

“Our results imply that the Africans imported most of their genetic diversity, including the mutations responsible for the diseases, and that admixture has spread these mutations in the Americas along most of the continent. In Africa, they are more compartmentalized geographically. This is important when we interpret data about where there are in the Americas mutations responsible for diseases such as cystic fibrosis and hereditary cancer,” Tarazona concluded.

The findings appeared on March 2 in the journal Molecular Biology and Evolution.

RelatedPosts

Scientists Found a Neanderthal Population That Lived in Total Isolation for 50,000 Years
Why do zebras have stripes? To ward off blood-sucking insects
How satellite alerts are tackling deforestation across African countries
Complete Neanderthal genome sequenced
Tags: africagenomeslave trade

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Archaeology

Archaeologists Found 7th Century Britons With Surprising West African Roots

byTibi Puiu
3 days ago
ozzy osbourne in concert
Genetics

Ozzy Osbourne’s Genes Really Were Wired for Alcohol and Addiction

byMihai Andrei
4 weeks ago
Animals

Dehorning Rhinos Looks Brutal But It’s Slashing Poaching Rates by 78 Percent

byTudor Tarita
2 months ago
Animals

This Wildcat Helped Create the House Cat and Is Now at Risk Because of It

byPetro Kotzé
2 months ago

Recent news

The UK Government Says You Should Delete Emails to Save Water. That’s Dumb — and Hypocritical

August 16, 2025

In Denmark, a Vaccine Is Eliminating a Type of Cervical Cancer

August 16, 2025
This Picture of the Week shows a stunning spiral galaxy known as NGC 4945. This little corner of space, near the constellation of Centaurus and over 12 million light-years away, may seem peaceful at first — but NGC 4945 is locked in a violent struggle. At the very centre of nearly every galaxy is a supermassive black hole. Some, like the one at the centre of our own Milky Way, aren’t particularly hungry. But NGC 4945’s supermassive black hole is ravenous, consuming huge amounts of matter — and the MUSE instrument at ESO’s Very Large Telescope (VLT) has caught it playing with its food. This messy eater, contrary to a black hole’s typical all-consuming reputation, is blowing out powerful winds of material. This cone-shaped wind is shown in red in the inset, overlaid on a wider image captured with the MPG/ESO telescope at La Silla. In fact, this wind is moving so fast that it will end up escaping the galaxy altogether, lost to the void of intergalactic space. This is part of a new study that measured how winds move in several nearby galaxies. The MUSE observations show that these incredibly fast winds demonstrate a strange behaviour: they actually speed up far away from the central black hole, accelerating even more on their journey to the galactic outskirts. This process ejects potential star-forming material from a galaxy, suggesting that black holes control the fates of their host galaxies by dampening the stellar birth rate. It also shows that the more powerful black holes impede their own growth by removing the gas and dust they feed on, driving the whole system closer towards a sort of galactic equilibrium. Now, with these new results, we are one step closer to understanding the acceleration mechanism of the winds responsible for shaping the evolution of galaxies, and the history of the universe. Links  Research paper in Nature Astronomy by Marconcini et al. Close-up view of NGC 4945’s nucleus

Astronomers Find ‘Punctum,’ a Bizarre Space Object That Might be Unlike Anything in the Universe

August 15, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.