ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

Humans don’t need to understand what they’re doing to create new technology

We're all team players.

Alexandru MicubyAlexandru Micu
April 1, 2019
in News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Humanity didn’t rise to where it is today because of their smarts alone — we got here because we had no issue copying whatever our neighbors invented.

Experimental setup.
Participants could modify the position of 4 weights attached to the wheel’s spokes, in an attempt to increase its speed along the sloping rail.
Image credits Maxime Derex.

An international research team including members from the University of Exeter, the Université Catholique de Lille, CNRS, and Arizona State University, say that new technology doesn’t necessarily hinge on competence. In fact, the creation of effective new technologies doesn’t even require that we understand them, they write.

Monkey see monkey do

It’s easy — and let’s admit it, pleasant — to believe that our success relies on us being smarter and more ingenious than other species. Our fancy tools allowed us to adapt to a variety of environments and out-compete native species, leading us to the world of today, so, naturally, they must be the product of a deeply capable species.

While that may be true, it’s not all brains, says the team. The functionality of many traditional technologies — the bow and arrow or kayaks for example — depends to some extent on parameters that are hard to understand or model even today. This makes some anthropologists suspect that technology arises from our propensity to copy other members of the group, not raw smarts. In such a system, small improvements to any existing technology will be selected for — similarly to biological evolution — eventually generating technologies that are effective despite not being understood by individuals.

The team tested this theory in the lab by asking students to optimize a wheel traveling down on a set of rails. Each was allowed five attempts to produce the most effective configuration they could, before filling out a questionnaire that gauged their knowledge of the physics involved. To simulate successive generations of people, the team created ‘chains’ of students: each individual had access to the wheel configuration and effectiveness from the final two attempts made by the preceding participant.

The set-up did become more efficient (as judged by the wheel’s speed) over the course of these simulated generations, the team reports. However, each individual’s understanding of the physical mechanisms impacting its speed remained mediocre. This strongly suggests that the wheel’s speed wasn’t linked to the participant’s levels of understanding. Each student produced more or less random configurations, but the sum of their trials and errors — as well as the ability to copy the fastest known configuration from previous uses — was enough to refine the ‘technology’ over time.

The team also carried out a second experiment in which participants handed down their last two attempts to the following student. This included the system’s set-up and a piece of text describing their theory on the wheel’s effectiveness. Once again, the wheel would move faster over time, but the individuals were oblivious as to why. The team says that this step shows how transmission of false or incomplete theories could hinder or even prevent later generations properly understanding the system — in a way, blinding them to a part of the problem.

RelatedPosts

Google’s new finger control technology seems taken from a science fiction movie
Three Technological Incidents that Almost Started World War III
Spectacular Archaeological Discovery: Lost City Belonging to Mysterious Culture Discovered in the Honduran Rain Forest
Political preference doesn’t dictate your views on climate — except if you’re American

All in all, the experiments show how important cultural processes are in the emergence of complex tools, the team explains. Our ability to copy others lets us create technology that no single individual could generate on their own. The authors say the findings suggest we should be more reserved in interpreting archeological remains in terms of cognitive capacity, as their results show that the later does not necessarily drive the former.

Paper DOI: http://dx.doi.org/10.1038/s41562-019-0567-9

 

Tags: cultureinventionTechnology

Share11TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Art

This New Museum Lets You Order and Handle Unique, Ancient Exhibits

byMihai Andrei
1 month ago
Future

We’re Starting to Sound Like ChatGPT — And We Don’t Even Realize It

byTibi Puiu
2 months ago
Future

Korean researchers used carbon nanotubes to build a motor that’s five times lighter

byMihai Andrei
3 months ago
News

Vegetarians Are More Rebellious (and Power Hungry) Than You Think

byMihai Andrei
3 months ago

Recent news

Popular RVs in the US are built with wood from destroyed orangutan rainforest: Investigation

September 10, 2025

The Evolution of the Human Brain Itself May Explain Why Autism is so Common

September 9, 2025

A Light-Based AI Can Generate Images Using Almost No Energy

September 9, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.